18 research outputs found

    F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local rhoA signaling in vivo

    Get PDF
    During immune surveillance and inflammation, leukocytes exit the vasculature through transient openings in the endothelium without causing plasma leakage. However, the exact mechanisms behind this intriguing phenomenon are still unknown. Here we report that maintenance of endothelial barrier integrity during leukocyte diapedesis requires local endothelial RhoA cycling. Endothelial RhoA depletion in vitro or Rho inhibition in vivo provokes neutrophil-induced vascular leakage that manifests during the physical movement of neutrophils through the endothelial layer. Local RhoA activation initiates the formation of contractile F-actin structures that surround emigrating neutrophils. These structures that surround neutrophil-induced endothelial pores prevent plasma leakage through actomyosin-based pore confinement. Mechanistically, we found that the initiation of RhoA activity involves ICAM-1 and the Rho GEFs Ect2 and LARG. In addition, regulation of actomyosin-based endothelial pore confinement involves ROCK2b, but not ROCK1. Thus, endothelial cells assemble RhoA-controlled contractile F-actin structures around endothelial pores that prevent vascular leakage during leukocyte extravasation

    F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling

    Get PDF
    During immune surveillance and inflammation, leukocytes exit the vasculature through transient openings in the endothelium without causing plasma leakage. However, the exact mechanisms behind this intriguing phenomenon are still unknown. Here we report that maintenance of endothelial barrier integrity during leukocyte diapedesis requires local endothelial RhoA cycling. Endothelial RhoA depletion in vitro or Rho inhibition in vivo provokes neutrophil-induced vascular leakage that manifests during the physical movement of neutrophils through the endothelial layer. Local RhoA activation initiates the formation of contractile F-actin structures that surround emigrating neutrophils. These structures that surround neutrophil-induced endothelial pores prevent plasma leakage through actomyosin-based pore confinement. Mechanistically, we found that the initiation of RhoA activity involves ICAM-1 and the Rho GEFs Ect2 and LARG. In addition, regulation of actomyosin-based endothelial pore confinement involves ROCK2b, but not ROCK1. Thus, endothelial cells assemble RhoA-controlled contractile F-actin structures around endothelial pores that prevent vascular leakage during leukocyte extravasation

    Endothelial junctional membrane protrusions serve as hotspots for neutrophil transmigration

    Get PDF
    Upon inflammation, leukocytes rapidly transmigrate across the endothelium to enter the inflamed tissue. Evidence accumulates that leukocytes use preferred exit sites, alhough it is not yet clear how these hotspots in the endothelium are defined and how they are recognized by the leukocyte. Using lattice light sheet microscopy, we discovered that leukocytes prefer endothelial membrane protrusions at cell junctions for transmigration. Phenotypically, these junctional membrane protrusions are present in an asymmetric manner, meaning that one endothelial cell shows the protrusion and the adjacent one does not. Consequently, leukocytes cross the junction by migrating underneath the protruding endothelial cell. These protrusions depend on Rac1 activity and by using a photo-activatable Rac1 probe, we could artificially generate local exit-sites for leukocytes. Overall, we have discovered a new mechanism that uses local induced junctional membrane protrusions to facilitate/steer the leukocyte escape/exit from inflamed vessel walls

    The precise molecular signals that control endothelial cell–cell adhesion within the vessel wall

    No full text
    Endothelial cell-cell adhesion within the wall of the vasculature controls a range of physiological processes, such as growth, integrity and barrier function. The adhesive properties of endothelial cells are tightly controlled by a complex cascade of signals transmitted from the surrounding environment or from within the cells themselves, with the dynamic nature of cellular adhesion and the regulating signalling networks now beginning to be appreciated. Here, we summarise the current knowledge of the mechanisms controlling endothelial cell-cell adhesion in the developing and mature blood vasculature

    The importance of mechanical forces for in vitro endothelial cell biology

    No full text
    Blood and lymphatic vessels are lined by endothelial cells which constantly interact with their luminal and abluminal extracellular environments. These interactions confer physical forces on the endothelium, such as shear stress, stretch and stiffness, to mediate biological responses. These physical forces are often altered during disease, driving abnormal endothelial cell behavior and pathology. Therefore, it is critical that we understand the mechanisms by which endothelial cells respond to physical forces. Traditionally, endothelial cells in culture are grown in the absence of flow on stiff substrates such as plastic or glass. These cells are not subjected to the physical forces that endothelial cells endure , thus the results of these experiments often do not mimic those observed in the body. The field of vascular biology now realize that an intricate analysis of endothelial signaling mechanisms requires complex systems to mimic conditions. Here, we will review what is known about the mechanical forces that guide endothelial cell behavior and then discuss the advancements in endothelial cell culture models designed to better mimic the vascular microenvironment. A wider application of these technologies will provide more biologically relevant information from cultured cells which will be reproducible to conditions found in the body

    Leukocyte transendothelial migration: a local affair

    No full text
    Inflammation is part of the complex biological response of body tissues to harmful stimuli, such as pathogens. It serves as a protective response that involves leukocytes, blood vessels and molecular mediators with the purpose to eliminate the initial cause of cell injury and to initiate tissue repair. Inflammation is tightly regulated by the body and is associated with transient crossing of leukocytes through the blood vessel wall, a process called transendothelial migration (TEM) or diapedesis. TEM is a close collaboration between leukocytes on one hand and the endothelium on the other. Limiting vascular leakage during TEM but also when the leukocyte has crossed the endothelium is essential for maintaining vascular homeostasis. Although many details have been uncovered during the recent years, the molecular mechanisms from the vascular part that drive TEM still shows significant gaps in our understanding. This review will focus on the local signals that are induced in the endothelium that regulate leukocyte TEM and simultaneous preservation of endothelial barrier function

    Leukocyte transendothelial migration: A local affair

    No full text
    Inflammation is part of the complex biological response of body tissues to harmful stimuli, such as pathogens. It serves as a protective response that involves leukocytes, blood vessels and molecular mediators with the purpose to eliminate the initial cause of cell injury and to initiate tissue repair. Inflammation is tightly regulated by the body and is associated with transient crossing of leukocytes through the blood vessel wall, a process called transendothelial migration (TEM) or diapedesis. TEM is a close collaboration between leukocytes on one hand and the endothelium on the other. Limiting vascular leakage during TEM but also when the leukocyte has crossed the endothelium is essential for maintaining vascular homeostasis. Although many details have been uncovered during the recent years, the molecular mechanisms from the vascular part that drive TEM still shows significant gaps in our understanding. This review will focus on the local signals that are induced in the endothelium that regulate leukocyte TEM and simultaneous preservation of endothelial barrier functio

    Endothelial RhoB and RhoC are dispensable for leukocyte diapedesis and for maintaining vascular integrity during diapedesis

    No full text
    Active remodeling of the actin cytoskeleton in endothelial cells is necessary for allowing leukocytes to cross the barrier during the process of transendothelial migration (TEM). Involvement of RhoGTPases to regulate actin organization is inevitable, and we recently reported on the local function of RhoA in limiting vascular leakage during leukocyte TEM. As a follow-up we investigated here the possible involvement of two other closely-related GTPases; RhoB and RhoC, in regulating leukocyte TEM and vascular barrier maintenance. Physiological flow experiments showed no substantial involvement of either endothelial RhoB or RhoC in neutrophil adhesion and transmigration efficiency. Besides neutrophil TEM, we did not observe a role for endothelial RhoB or RhoC in limiting vascular leakage in both inflammatory conditions and during TEM. In conclusion, endothelial RhoB and RhoC are both dispensable for regulating leukocyte diapedesis and for maintaining vascular barrier function under inflammatory conditions and during leukocyte diapedesis

    Endothelial RhoB and RhoC are dispensable for leukocyte diapedesis and for maintaining vascular integrity during diapedesis

    No full text
    Active remodeling of the actin cytoskeleton in endothelial cells is necessary for allowing leukocytes to cross the barrier during the process of transendothelial migration (TEM). Involvement of RhoGTPases to regulate actin organization is inevitable, and we recently reported on the local function of RhoA in limiting vascular leakage during leukocyte TEM. As a follow-up we investigated here the possible involvement of two other closely-related GTPases; RhoB and RhoC, in regulating leukocyte TEM and vascular barrier maintenance. Physiological flow experiments showed no substantial involvement of either endothelial RhoB or RhoC in neutrophil adhesion and transmigration efficiency. Besides neutrophil TEM, we did not observe a role for endothelial RhoB or RhoC in limiting vascular leakage in both inflammatory conditions and during TEM. In conclusion, endothelial RhoB and RhoC are both dispensable for regulating leukocyte diapedesis and for maintaining vascular barrier function under inflammatory conditions and during leukocyte diapedesi
    corecore