31 research outputs found

    Efficient Process Model Discovery Using Maximal Pattern Mining

    Get PDF
    In recent years, process mining has become one of the most important and promising areas of research in the field of business process management as it helps businesses understand, analyze, and improve their business processes. In particular, several proposed techniques and algorithms have been proposed to discover and construct process models from workflow execution logs (i.e., event logs). With the existing techniques, mined models can be built based on analyzing the relationship between any two events seen in event logs. Being restricted by that, they can only handle special cases of routing constructs and often produce unsound models that do not cover all of the traces seen in the log. In this paper, we propose a novel technique for process discovery using Maximal Pattern Mining (MPM) where we construct patterns based on the whole sequence of events seen on the traces—ensuring the soundness of the mined models. Our MPM technique can handle loops (of any length), duplicate tasks, non-free choice constructs, and long distance dependencies. Our evaluation shows that it consistently achieves better precision, replay fitness and efficiency than the existing techniques

    Process Miner — A Tool for Mining Process Schemes from Event-Based Data

    No full text

    Endogenous virophages are active and mitigate giant virus infection in the marine protist <i>Cafeteria burkhardae</i>

    Get PDF
    Endogenous viral elements (EVEs) are common genetic passengers in various protists. Some EVEs represent viral fossils, whereas others are still active. The marine heterotrophic flagellate Cafeteria burkhardae contains several EVE types related to the virophage mavirus, a small DNA virus that parasitizes the lytic giant virus CroV. We hypothesized that endogenous virophages may act as an antiviral defense system in protists, but no protective effect of virophages in wild host populations has been shown so far. Here, we tested the activity of virophage EVEs and studied their impact on giant virus replication. We found that endogenous mavirus-like elements (EMALEs) from globally distributed Cafeteria populations produced infectious virus particles specifically in response to CroV infection. However, reactivation was stochastic, often inefficient, and poorly reproducible. Interestingly, only one of eight EMALE types responded to CroV infection, implying that other EMALEs may be linked to different giant viruses. We isolated and cloned several reactivated virophages and characterized their particles, genomes, and infection dynamics. All tested virophages inhibited the production of CroV during coinfection, thereby preventing lysis of the host cultures in a dose-dependent manner. Comparative genomics of different C. burkhardae strains revealed that inducible EMALEs are common and are not linked to specific geographic locations. We demonstrate that naturally occurring virophage EVEs reactivate upon giant virus infection, thus providing a striking example that eukaryotic EVEs can become active under specific conditions. Moreover, our results support the hypothesis that virophages can act as an adaptive antiviral defense system in protists
    corecore