11 research outputs found

    Visual Information Alone Changes Behavior and Physiology during Social Interactions in a Cichlid Fish (Astatotilapia burtoni)

    Get PDF
    Social behavior can influence physiological systems dramatically yet the sensory cues responsible are not well understood. Behavior of male African cichlid fish, Astatotilapia burtoni, in their natural habitat suggests that visual cues from conspecifics contribute significantly to regulation of social behavior. Using a novel paradigm, we asked whether visual cues alone from a larger conspecific male could influence behavior, reproductive physiology and the physiological stress response of a smaller male. Here we show that just seeing a larger, threatening male through a clear barrier can suppress dominant behavior of a smaller male for up to 7 days. Smaller dominant males being “attacked” visually by larger dominant males through a clear barrier also showed physiological changes for up to 3 days, including up-regulation of reproductive- and stress-related gene expression levels and lowered plasma 11-ketotestesterone concentrations as compared to control animals. The smaller males modified their appearance to match that of non-dominant males when exposed to a larger male but they maintained a physiological phenotype similar to that of a dominant male. After 7 days, reproductive- and stress- related gene expression, circulating hormone levels, and gonad size in the smaller males showed no difference from the control group suggesting that the smaller male habituated to the visual intruder. However, the smaller male continued to display subordinate behaviors and assumed the appearance of a subordinate male for a full week despite his dominant male physiology. These data suggest that seeing a larger male alone can regulate the behavior of a smaller male but that ongoing reproductive inhibition depends on additional sensory cues. Perhaps, while experiencing visual social stressors, the smaller male uses an opportunistic strategy, acting like a subordinate male while maintaining the physiology of a dominant male

    Habitat Degradation and Seasonality Affect Physiological Stress Levels of Eulemur collaris in Littoral Forest Fragments

    No full text
    The littoral forest on sandy soil is among the most threatened habitats in Madagascar and, as such, it represents a hot-spot within a conservation hot-spot. Assessing the health of the resident lemur fauna is not only critical for the long-term viability of these populations, but also necessary for the future re-habilitation of this unique habitat. Since the Endangered collared brown lemur, Eulemur collaris, is the largest seed disperser of the Malagasy south-eastern littoral forest its survival in this habitat is crucial. In this study we compared fecal glucocorticoid metabolite (fGCM) levels, a measure of physiological stress and potential early indicator of population health, between groups of collared brown lemurs living in a degraded forest fragment and groups occurring in a more preserved area. For this, we analysed 279 fecal samples collected year-round from 4 groups of collared brown lemurs using a validated 11-oxoetiocholanolone enzyme immunoassay and tested if fGCM levels were influenced by reproductive stages, phenological seasons, sex, and habitat degradation. The lemurs living in the degraded forest had significantly higher fGCM levels than those living in the more preserved area. In particular, the highest fGCM levels were found during the mating season in all animals and in females during gestation in the degraded forest. Since mating and gestation are both occurring during the lean season in the littoral forest, these results likely reflect a combination of ecological and reproductive pressures. Our findings provide a clear indication that habitat degradation has additive effects to the challenges found in the natural habitat. Since increased stress hormone output may have long-term negative effects on population health and reproduction, our data emphasize the need for and may add to the development of effective conservation plans for the species

    Understanding the trade-off between the environment and fertility in cows and ewes.

    No full text
    The environment contributes to production diseases that in turn badly affect cow performance, fertility and culling. Oestrus intensity is lower in lame cows, and in all cows 26% potential oestrus events are not expressed (to avoid getting pregnant). To understand these trade-offs, we need to know how animals react to their environment and how the environment influences hypothalamus-pituitary-adrenal axis (HPA) interactions with the hypothalamus-pituitary-ovarian axis (HPO). Neurotransmitters control secretion of GnRH into hypophyseal portal blood. GnRH/LH pulse amplitude and frequency drive oestradiol production, culminating in oestrus behaviour and a precisely-timed GnRH/LH surge, all of which are disrupted by poor environments. Responses to peripheral neuronal agents give clues about mechanisms, but do these drugs alter perception of stimuli, or suppress consequent responses? In vitro studies confirm some neuronal interactions between the HPA and HPO; and immuno-histochemistry clarifies the location and sequence of inter-neurone activity within the brain. In both species, exogenous corticoids, ACTH and/or CRH act at the pituitary (reduce LH release by GnRH), and hypothalamus (lower GnRH pulse frequency and delay surge release). This requires inter-neurones as GnRH cells do not have receptors for HPA compounds. There are two (simultaneous, therefore fail-safe?) pathways for CRH suppression of GnRH release via CRH-Receptors: one being the regulation of kisspeptin/dynorphin and other cell types in the hypothalamus, and the other being the direct contact between CRH and GnRH cell terminals in the median eminence. When we domesticate animals, we must provide the best possible environment otherwise animals trade-off with lower production, less intense oestrus behaviour, and impaired fertility. Avoiding life-time peri-parturient problems by managing persistent lactations in cows may be a worthy trade-off on both welfare and economic terms - better than the camouflage use of drugs/hormones/feed additives/intricate technologies? In the long term, getting animals and environment in a more harmonious balance is the ultimate strategy

    The emerging and uncultivated potential of CRISPR technology in plant science

    No full text

    Novel Mechanisms Underlying Neuroendocrine Regulation of Aggression: A Synthesis of Rodent, Avian, and Primate Studies

    No full text

    The Neurochemistry of Limbic-Hypothalamic Circuits Regulating Sexual Receptivity

    No full text
    corecore