7,334 research outputs found
Solid-solid phase transition in hard ellipsoids
We present a computer simulation study of the crystalline phases of hard
ellipsoids of revolution. A previous study [Phys. Rev. E, \textbf{75}, 020402
(2007)] showed that for aspect ratios the previously suggested
stretched-fcc phase [Mol. Phys., \textbf{55}, 1171 (1985)] is unstable with
respect to a simple monoclinic phase with two ellipsoids of different
orientations per unit cell (SM2). In order to study the stability of these
crystalline phases at different aspect ratios and as a function of density we
have calculated their free energies by thermodynamic integration. The
integration path was sampled by an expanded ensemble method in which the
weights were adjusted by the Wang-Landau algorithm.
We show that for aspect ratios the SM2 structure is more stable
than the stretched-fcc structure for all densities above solid-nematic
coexistence. Between and our calculations reveal a
solid-solid phase transition
Novel crystal phase in suspensions of hard ellipsoids
We present a computer simulation study on the crystalline phases of hard
ellipsoids of revolution. For aspect ratios greater than or equal to 3 the
previously suggested stretched-fcc phase [D. Frenkel and B. M. Mulder, Mol.
Phys. 55, 1171 (1985)] is replaced by a novel crystalline phase. Its unit cell
contains two ellipsoids with unequal orientations. The lattice is simple
monoclinic. The angle of inclination of the lattice, beta, is a very soft
degree of freedom, while the two right angles are stiff. For one particular
value of beta, the close-packed version of this crystal is a specimen of the
family of superdense packings recently reported [Donev et al., Phys. Rev. Lett.
92, 255506 (2004)]. These results are relevant for studies of nucleation and
glassy dynamics of colloidal suspensions of ellipsoids.Comment: 4 pages, 4 figure
Percolation in suspensions of polydisperse hard rods : quasi-universality and finite-size effects
We present a study of connectivity percolation in suspensions of hard
spherocylinders by means of Monte Carlo simulation and connectedness
percolation theory. We focus attention on polydispersity in the length, the
diameter and the connectedness criterion, and invoke bimodal, Gaussian and
Weibull distributions for these. The main finding from our simulations is that
the percolation threshold shows quasi universal behaviour, i.e., to a good
approximation it depends only on certain cumulants of the full size and
connectivity distribution. Our connectedness percolation theory hinges on a
Lee-Parsons type of closure recently put forward that improves upon the
often-used second virial approximation [ArXiv e-prints, May 2015, 1505.07660].
The theory predicts exact universality. Theory and simulation agree
quantitatively for aspect ratios in excess of 20, if we include the
connectivity range in our definition of the aspect ratio of the particles. We
further discuss the mechanism of cluster growth that, remarkably, differs
between systems that are polydisperse in length and in width, and exhibits
non-universal aspects.Comment: 7 figure
Description of hard sphere crystals and crystal-fluid interfaces: a critical comparison between density functional approaches and a phase field crystal model
In materials science the phase field crystal approach has become popular to
model crystallization processes. Phase field crystal models are in essence
Landau-Ginzburg-type models, which should be derivable from the underlying
microscopic description of the system in question. We present a study on
classical density functional theory in three stages of approximation leading to
a specific phase field crystal model, and we discuss the limits of
applicability of the models that result from these approximations. As a test
system we have chosen the three--dimensional suspension of monodisperse hard
spheres. The levels of density functional theory that we discuss are
fundamental measure theory, a second-order Taylor expansion thereof, and a
minimal phase-field crystal model. We have computed coexistence densities,
vacancy concentrations in the crystalline phase, interfacial tensions and
interfacial order parameter profiles, and we compare these quantities to
simulation results. We also suggest a procedure to fit the free parameters of
the phase field crystal model.Comment: 21 page
Pressure-induced Superconductivity in CaLi2
A search for superconductivity has been carried out on the hexagonal
polymorph of Laves-phase CaLi2, a compound for which Feng, Ashcroft, and
Hoffmann predict highly anomalous behavior under pressure. No superconductivity
is observed above 1.10 K at ambient pressure. However, high-pressure ac
susceptibility and electrical resistivity studies to 81 GPa reveal bulk
superconductivity in CaLi2 at temperatures as high as 13 K. The normal-state
resistivity shows a dramatic increase with pressure.Comment: bulk superconductivity in CaLi2 now confirme
Crystal nucleation mechanism in melts of short polymer chains under quiescent conditions and under shear flow
We present a molecular dynamics simulation study of crystal nucleation from
undercooled melts of n-alkanes, and we identify the molecular mechanism of
homogeneous crystal nucleation under quiescent conditions and under shear flow.
We compare results for n-eicosane(C20) and n-pentacontahectane(C150), i.e. one
system below the entanglement length and one above. Under quiescent conditions,
we observe that entanglement does not have an effect on the nucleation
mechanism. For both chain lengths, the chains first align and then straighten
locally. Then the local density increases and finally positional ordering sets
in. At low shear rates the nucleation mechanism is the same as under quiescent
conditions, while at high shear rates the chains align and straighten at the
same time. We report on the effects of shear rate and temperature on the
nucleation rates and estimate the critical shear rates, beyond which the
nucleation rates increase with the shear rate. We show that the viscosity of
the system is not affected by the crystalline nuclei.Comment: 9 page
Precursor-mediated crystallization process in suspensions of hard spheres
We report on a large scale computer simulation study of crystal nucleation in
hard spheres. Through a combined analysis of real and reciprocal space data, a
picture of a two-step crystallization process is supported: First dense,
amorphous clusters form which then act as precursors for the nucleation of
well-ordered crystallites. This kind of crystallization process has been
previously observed in systems that interact via potentials that have an
attractive as well as a repulsive part, most prominently in protein solutions.
In this context the effect has been attributed to the presence of metastable
fluid-fluid demixing. Our simulations, however, show that a purely repulsive
system (that has no metastable fluid-fluid coexistence) crystallizes via the
same mechanism.Comment: 4 figure
Anomalous He-Gas High-Pressure Studies on Superconducting LaO1-xFxFeAs
AC susceptibility measurements have been carried out on superconducting
LaO1-xFxFeAs for x=0.07 and 0.14 under He-gas pressures to about 0.8 GPa. Not
only do the measured values of dTc/dP differ substantially from those obtained
in previous studies using other pressure media, but the Tc(P) dependences
observed depend on the detailed pressure/temperature history of the sample. A
sizeable sensitivity of Tc(P) to shear stresses provides a possible
explanation
Free energies, vacancy concentrations and density distribution anisotropies in hard--sphere crystals: A combined density functional and simulation study
We perform a comparative study of the free energies and the density
distributions in hard sphere crystals using Monte Carlo simulations and density
functional theory (employing Fundamental Measure functionals). Using a recently
introduced technique (Schilling and Schmid, J. Chem. Phys 131, 231102 (2009))
we obtain crystal free energies to a high precision. The free energies from
Fundamental Measure theory are in good agreement with the simulation results
and demonstrate the applicability of these functionals to the treatment of
other problems involving crystallization. The agreement between FMT and
simulations on the level of the free energies is also reflected in the density
distributions around single lattice sites. Overall, the peak widths and
anisotropy signs for different lattice directions agree, however, it is found
that Fundamental Measure theory gives slightly narrower peaks with more
anisotropy than seen in the simulations. Among the three types of Fundamental
Measure functionals studied, only the White Bear II functional (Hansen-Goos and
Roth, J. Phys.: Condens. Matter 18, 8413 (2006)) exhibits sensible results for
the equilibrium vacancy concentration and a physical behavior of the chemical
potential in crystals constrained by a fixed vacancy concentration.Comment: 17 pages, submitted to Phys. Rev.
- …