77 research outputs found

    In vitro effects of particulate matter associated with a wildland fire in the north-west of Italy

    Get PDF
    Wildland fires, increasing in recent decades in the Mediterranean region due to climate change, can contribute to PM levels and composition. This study aimed to investigate biological effects of PM2.5 (Ø 10 (Ø 10 and PM2.5 were measured during the fire suggesting that near and distant sites were influenced by fire pollutants. The PM10 and PM2.5 extracts induced a significant mutagenicity in all sites and the mutagenic effect was increased with respect to historical data. All extracts induced a slight increase of the estrogenic activity but a possible antagonistic activity of PM samples collected near fire was observed. No cytotoxicity or DNA damage was detected. Results confirm that fires could be relevant for human health, since they can worsen the air quality increasing PM concentrations, mutagenic and estrogenic effects

    Multiscale Investigation of the Structural, Electrical and Photoluminescence Properties of MoS2 Obtained by MoO3 Sulfurization

    Get PDF
    In this paper, we report a multiscale investigation of the compositional, morphological, structural, electrical, and optical emission properties of 2H-MoS2 obtained by sulfurization at 800◦C of very thin MoO3 films (with thickness ranging from ~2.8 nm to ~4.2 nm) on a SiO2/Si substrate. XPS analyses confirmed that the sulfurization was very effective in the reduction of the oxide to MoS2, with only a small percentage of residual MoO3 present in the final film. High-resolution TEM/STEM analyses revealed the formation of few (i.e., 2–3 layers) of MoS2 nearly aligned with the SiO2 surface in the case of the thinnest (~2.8 nm) MoO3 film, whereas multilayers of MoS2 partially standing up with respect to the substrate were observed for the ~4.2 nm one. Such different configurations indicate the prevalence of different mechanisms (i.e., vapour-solid surface reaction or S diffusion within the film) as a function of the thickness. The uniform thickness distribution of the few-layer and multilayer MoS2 was confirmed by Raman mapping. Furthermore, the correlative plot of the characteristic A1g-E2g Raman modes revealed a compressive strain (ε ≈ −0.78 ± 0.18%) and the coexistence of n-and p-type doped areas in the few-layer MoS2 on SiO2, where the p-type doping is probably due to the presence of residual MoO3 . Nanoscale resolution current mapping by C-AFM showed local inhomogeneities in the conductivity of the few-layer MoS2, which are well correlated to the lateral changes in the strain detected by Raman. Finally, characteristic spectroscopic signatures of the defects/disorder in MoS2 films produced by sulfurization were identified by a comparative analysis of Raman and photoluminescence (PL) spectra with CVD grown MoS2 flakes

    Results from the European Union MAPEC_LIFE cohort study on air pollution and chromosomal damage in children: are public health policies sufficiently protective?

    Get PDF
    Background: Children are at high risk of suffering health consequences of air pollution and childhood exposure can increase the risk of developing chronic diseases in adulthood. This study, part of the MAPEC_LIFE project (LIFE12 ENV/IT/000614), aimed to investigate the associations between exposure to urban air pollutants and micronucleus (MN) frequency, as a biomarker of chromosomal damage, in buccal cells of children for supporting implementation and updating of environmental policy and legislation. Methods: This prospective epidemiological cohort study was carried out on 6- to 8-year-old children living in five Italian towns with different levels and features of air pollution. Exfoliated buccal cells of the children were sampled twice, in winter and spring, obtaining 2139 biological samples for genotoxicological investigation. Micronucleus (MN) frequency was investigated in buccal cells of children and its association with air pollution exposure was assessed applying multiple Poisson regression mixed models, including socio-demographic and lifestyle factors as confounders. We also dichotomize air pollutants\u2019 concentration according to the EU Ambient Air Quality Directives and WHO Air Quality Guidelines in all Poisson regression models to assess their risk predictive capacity. Results: Positive and statistically significant associations were found between MN frequency and PM10, PM2.5, benzene, SO2 and ozone. The increment of the risk of having MN in buccal cells for each \u3bcg/m3 increase of pollutant concentration was maximum for benzene (18.9%, 95% CIs 2.2\u201338.4%) and modest for the other pollutants (between 0.2 and 1.4%). An increased risk (between 17.9% and 59.8%) was found also for exposure to PM10, benzene and benzo(a)pyrene levels higher than the threshold limits. Conclusions: Some air pollutants are able to induce chromosomal damage in buccal cells of children even at concentrations below present EU/WHO limits. This type of biological effects may be indicative of the environmental pressure which populations are exposed to in urban areas

    Pro-environmental behaviors: Determinants and obstacles among italian university students

    Get PDF
    none31The awareness of citizens concerning the health risks caused by environmental pollution is growing, but studies on determinants of pro-environmental behaviors have rarely examined health-related aspects. In this study, we investigated these determinants using data from a large survey among Italian university students (15 Universities: 4778 filled questionnaires). Besides the health-related aspects, represented by environmental health risk perception and functional health literacy, we considered social and demographic characteristics (gender, area of residence, sources of information, trust in institutional and non-institutional subjects, and students’ capacity of positive actions, indicated as internal locus of control). The attitudes towards pro-environmental behaviors were positive for more than 70% of students and positively related with health risk perception, internal locus of control, and health literacy. The correspondence between the positive attitudes towards pro-environmental behaviors and the real adoption of such behaviors was approximately 20% for most behaviors, except for the separate collection of waste (60%). Such a discrepancy can be attributable to external obstacles (i.e., lack of time, costs, lack of support). The health-related aspects were linked to the pro-environmental attitudes, but to a lesser extent to pro-environmental behaviors, owing to the complexity of their determinants. However, they should be taken in account in planning education interventions.openCarducci A.; Fiore M.; Azara A.; Bonaccorsi G.; Bortoletto M.; Caggiano G.; Calamusa A.; De Donno A.; De Giglio O.; Dettori M.; Di Giovanni P.; Di Pietro A.; Facciola A.; Federigi I.; Grappasonni I.; Izzotti A.; Libralato G.; Lorini C.; Montagna M.T.; Nicolosi L.K.; Paladino G.; Palomba G.; Petrelli F.; Schiliro T.; Scuri S.; Serio F.; Tesauro M.; Verani M.; Vinceti M.; Violi F.; Ferrante M.Carducci, A.; Fiore, M.; Azara, A.; Bonaccorsi, G.; Bortoletto, M.; Caggiano, G.; Calamusa, A.; De Donno, A.; De Giglio, O.; Dettori, M.; Di Giovanni, P.; Di Pietro, A.; Facciola, A.; Federigi, I.; Grappasonni, I.; Izzotti, A.; Libralato, G.; Lorini, C.; Montagna, M. T.; Nicolosi, L. K.; Paladino, G.; Palomba, G.; Petrelli, F.; Schiliro, T.; Scuri, S.; Serio, F.; Tesauro, M.; Verani, M.; Vinceti, M.; Violi, F.; Ferrante, M

    Cabbage butterfly as bioindicator species to investigate the genotoxic effects of PM10

    Get PDF
    Atmospheric pollution poses a serious threat to environment and human health, and particulate matter (PM) is one of the major contributors. Biological effects induced by PM are investigated through in vitro assays using cells and by in vivo tests with laboratory model animals. However, also the estimation of adverse effects of pollutants, including airborne ones, on wild animals, such as insects, is an essential component of environmental risk assessment. Among insects, butterflies are sensitive to environmental changes and are important wild pollinators, so they might be suitable as environmental bioindicator species. The aim of this study was to evaluate the suitability of a wild cabbage butterfly species (Pieris brassicae) as a bioindicator organism to assess the genotoxic effects of PM10 collected in different sites. PM10 was collected from April to September in urban, suburban, and rural sites. P. brassicae larvae were reared in laboratory under controlled conditions on cabbage plants and exposed to PM10 organic extracts or dimethyl sulfoxide (controls) through vaporization. After exposure, larvae were dissected, and cells were used for comet assay. All PM extracts induced significant DNA damage in exposed larvae compared to controls and the extract collected in the most polluted site caused the highest genotoxic effect. In conclusion, the study suggested that butterflies, such as P. brassicae, could be applied as sensitive and promising bioindicators to investigate air quality and PM genotoxicity. Indeed, the use of these organisms allows the detection of genotoxic effects induced by PM sampled also in low-polluted areas

    Dynamic modification of Fermi energy in single-layer graphene by photoinduced electron transfer from carbon dots

    Get PDF
    Graphene (Gr)—a single layer of two-dimensional sp2 carbon atoms—and Carbon Dots (CDs)—a novel class of carbon nanoparticles—are two outstanding nanomaterials, renowned for their peculiar properties: Gr for its excellent charge-transport, and CDs for their impressive emission properties. Such features, coupled with a strong sensitivity to the environment, originate the interest in bringing together these two nanomaterials in order to combine their complementary properties. In this work, the investigation of a solid-phase composite of CDs deposited on Gr is reported. The CD emission efficiency is reduced by the contact of Gr. At the same time, the Raman analysis of Gr demonstrates the increase of Fermi energy when it is in contact with CDs under certain conditions. The interaction between CDs and Gr is modeled in terms of an electron-transfer from photoexcited CDs to Gr, wherein an electron is first transferred from the carbon core to the surface states of CDs, and from there to Gr. There, the accumulated electrons determine a dynamical n-doping effect modulated by photoexcitation. The CD–graphene interaction unveiled herein is a step forward in the understanding of the mutual influence between carbon-based nanomaterials, with potential prospects in light conversion applications

    Congenital Dyserythropoietic Anemia Type-ii Associated With G6pd Seattle In A Sicilian Child

    No full text
    A 2-year-old Sicilian boy was investigated because of chronic nonspherocytic hemolytic anemia (CNSHA) associated with hepatosplenomegaly. Appropriate studies revealed deficiency of glucose-6-phosphate dehydrogenase type Seattle (G6PD Seattle). In addition, bone marrow morphology, serological studies and analysis of red cell membrane proteins revealed congenital dyserythropoietic anemia (CDA) type II (or HEMPAS). Because G6PD Seattle on its own does not cause CNSHA, we believe that the clinical manifestations in this patient are essentially due to the CDA type II abnormality. However, the coexistence of these two different red cell abnormalities may affect the clinical picture specifically by making CDA type II more hemolytic than it would have been otherwise
    • …
    corecore