37 research outputs found

    Large Scale Bacterial Colony Screening of Diversified FRET Biosensors

    No full text
    Biosensors based on Forster Resonance Energy Transfer (FRET) between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors

    Comparative monolayer investigations of surface properties of negatively charged glycosphingolipids from vertebrates (gangliosides) and invertebrates (SGL-II, lipid IV).

    Get PDF
    The surface properties of four negatively charged glycosphingolipids from vertebrates, the sialo-glycosphingolipids (=gangliosides) GM1, GD1a, GT1b and a sulfo-glycosphingolipid (=sulfatide), and of the two negatively charged glycosphingolipids from lower invertebrates, the glucurono-glycosphingolipid Lipid IV and the aminophosphono-glycosphingo-lipid SGL-II were investigated in monolayers at the air/water interface. The molecular peculiarities under investigation were surface pressure (π) and surface potential (ΔV) which are described for Lipid IV and SGL-II for the first time. The surface pressure/area isotherms of all glycosphingolipids were typical of a liquid-expanded monolayer and, with the exception of SGL-II, exhibited a phase transition to a liquid-condensed state at surface pressures above 20 mN/m. The surface potential/molecular area data found for gangliosides in the closely packed state at π=30 mN/m (GM1: ΔV = −17 mV; GD1a: ΔV = −35 mV; GT1b: ΔV = −39 mV) showed only a slight influence of the additional number of negatively charged residues. For Lipid IV, the surface behavior was very similar to GM1 both possessing one negative group per molecule, whereas in SGL-II also the surface potential data (ΔV = −173 mV) were different compared with GD1a both possessing two negative groups per molecule. The addition of Ca2+ condensed the monolayers of all glycolipids and increased the potential in the direction to more positive values, but these findings were less effective in SGL-II films. On the basis of monolayer results presented here, in biological membranes of invertebrates especially Lipid IV might play a similar role as the ganglioside GM1 in vertebrate cells

    Two adhesive systems cooperatively regulate axon ensheathment and myelin growth in the CNS

    Get PDF
    Central nervous system myelin is a multilayered membrane produced by oligodendrocytes to increase neural processing speed and efficiency, but the molecular mechanisms underlying axonal selection and myelin wrapping are unknown. Here, using combined morphological and molecular analyses in mice and zebrafish, we show that adhesion molecules of the paranodal and the internodal segment work synergistically using overlapping functions to regulate axonal interaction and myelin wrapping. In the absence of these adhesive systems, axonal recognition by myelin is impaired with myelin growing on top of previously myelinated fibers, around neuronal cell bodies and above nodes of Ranvier. In addition, myelin wrapping is disturbed with the leading edge moving away from the axon and in between previously formed layers. These data show how two adhesive systems function together to guide axonal ensheathment and myelin wrapping, and provide a mechanistic understanding of how the spatial organization of myelin is achieved

    Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis

    Get PDF
    Remyelination requires innate immune system function, but how exactly microglia and macrophages clear myelin debris after injury and tailor a specific regenerative response is unclear. Here, we asked whether pro-inflammatory microglial/macrophage activation is required for this process. We established a novel toxin-based spinal cord model of de- and remyelination in zebrafish and showed that pro-inflammatory NF-κB-dependent activation in phagocytes occurs rapidly after myelin injury. We found that the pro-inflammatory response depends on myeloid differentiation primary response 88 (MyD88). MyD88-deficient mice and zebrafish were not only impaired in the degradation of myelin debris, but also in initiating the generation of new oligodendrocytes for myelin repair. We identified reduced generation of TNF-α in lesions of MyD88-deficient animals, a pro-inflammatory molecule that was able to induce the generation of new premyelinating oligodendrocytes. Our study shows that pro-inflammatory phagocytic signaling is required for myelin debris degradation, for inflammation resolution, and for initiating the generation of new oligodendrocytes

    Mapping autophagosome contents identifies interleukin-7 receptor-α as a key cargo modulating CD4+ T cell proliferation

    Get PDF
    CD4+ T cells are pivotal cells playing roles in the orchestration of humoral and cytotoxic immune responses. It is known that CD4+ T cell proliferation relies on autophagy, but identification of the autophagosomal cargo involved is missing. Here we create a transgenic mouse model, to enable direct mapping of the proteinaceous content of autophagosomes in primary cells by LC3 proximity labelling. Interleukin-7 receptor-α, a cytokine receptor mostly found in naïve and memory T cells, is reproducibly detected in autophagosomes of activated CD4+ T cells. Consistently, CD4+ T cells lacking autophagy show increased interleukin-7 receptor-α surface expression, while no defect in internalisation is observed. Mechanistically, excessive surface interleukin-7 receptor-α sequestrates the common gamma chain, impairing the interleukin-2 receptor assembly and downstream signalling crucial for T cell proliferation. This study shows that key autophagy substrates can be reliably identified in this mouse model and help mechanistically unravel autophagy's contribution to healthy physiology and disease

    A Dynamic FRET Reporter of Gene Expression Improved by Functional Screening

    No full text
    Here, we describe a reporter system that consists of a FRET biosensor and its corresponding aptamer. The FRET biosensor employs the synthetic aptamer binding peptide Rsg1.2 sandwiched between mutants of the Green Fluorescent Protein and undergoes FRET when binding its corresponding Rev Responsive Element (RRE) RNA aptamer. We developed a novel approach to engineer FRET biosensors by linker extension and screening to improve signal strength of the biosensor which we called VAmPIRe (Viral Aptamer binding Peptide based Indicator for RNA detection). We demonstrate that the system is quantitative, reversible and works with high specificity in vitro and in vivo in living bacteria and mammalian cells. Thus, VAmPIRe may become valuable for RNA localizations and as a dynamic RNA-based reporter for live cell imaging. Moreover, functional screening of large libraries as demonstrated here may become applicable to optimize some of the many FRET biosensors of cellular signaling

    Application of aptamers and autofluorescent proteins for RNA visualization

    No full text
    The repertoire of RNAs transcribed and processed within living cells is of extraordinary complexity. With new types of RNA being identified, the need for tools to investigate the spatio-temporal aspects of processing and trafficking of these molecules has become more evident. To visualize RNA in living cells, autofluorescent proteins (AFPs) appear as a promising alternative to synthetic fluorescent compound based labels. While current fluorescent protein-based RNA labelings have provided many new insights into the biology of RNA regulation, further improvements and adaptations are desirable to make AFP labels as valuable in the RNA world as they have proven to be for protein tagging. This article reviews the achievements and existing challenges in engineering AFPs as efficient RNA tags for high resolution fluorescence microscopy in living cells

    The Stereoscopic Art of Ludwig Wilding

    No full text
    corecore