3,008 research outputs found

    Quantum and thermal spin relaxation in diluted spin ice: Dy(2-x)MxTi2O7 (M = Lu, Y)

    Get PDF
    We have studied the low temperature a.c. magnetic susceptibility of the diluted spin ice compound Dy(2-x)MxTi2O7, where the magnetic Dy ions on the frustrated pyrochlore lattice have been replaced with non-magnetic ions, M = Y or Lu. We examine a broad range of dilutions, 0 <= x <= 1.98, and we find that the T ~ 16 K freezing is suppressed for low levels of dilution but re-emerges for x > 0.4 and persists to x = 1.98. This behavior can be understood as a non-monotonic dependence of the quantum spin relaxation time with dilution. The results suggest that the observed spin freezing is fundamentally a single spin process which is affected by the local environment, rather than the development of spin-spin correlations as earlier data suggested.Comment: 26 pages, 9 figure

    Quenching of Cross Sections in Nucleon Transfer Reactions

    Full text link
    Cross sections for proton knockout observed in (e,e'p) reactions are apparently quenched by a factor of ~0.5, an effect attributed to short-range correlations between nucleons. Here we demonstrate that such quenching is not restricted to proton knockout, but a more general phenomenon associated with any nucleon transfer. Measurements of absolute cross sections on a number of targets between 16O and 208Pb were analyzed in a consistent way, with the cross sections reduced to spectroscopic factors through the distorted-wave Born approximation with global optical potentials. Across the 124 cases analyzed here, induced by various proton- and neutron-transfer reactions and with angular momentum transfer l=0-7, the results are consistent with a quenching factor of 0.55. This is an apparently uniform quenching of single-particle motion in the nuclear medium. The effect is seen not only in (d,p) reactions but also in reactions with A=3 and 4 projectiles, when realistic wave functions are used for the projectiles.Comment: 5 pages, 3 figures, accepted to Physical Review Letter

    Dzyaloshinski-Moriya interactions in the kagome lattice

    Full text link
    The kagom\'e lattice exhibits peculiar magnetic properties due to its strongly frustated cristallographic structure, based on corner sharing triangles. For nearest neighbour antiferromagnetic Heisenberg interactions there is no Neel ordering at zero temperature both for quantum and classical s pins. We show that, due to the peculiar structure, antisymmetric Dzyaloshinsky-Moriya interactions (D.(Si×Sj){\bf D} . ({\bf S}_i \times {\bf S}_j)) are present in this latt ice. In order to derive microscopically this interaction we consider a set of localized d-electronic states. For classical spins systems, we then study the phase diagram (T, D/J) through mean field approximation and Monte-Carlo simulations and show that the antisymmetric interaction drives this system to ordered states as soon as this interaction is non zero. This mechanism could be involved to explain the magnetic structure of Fe-jarosites.Comment: 4 pages, 2 figures. Presented at SCES 200

    Nanoengineered Curie Temperature in Laterally-Patterned Ferromagnetic Semiconductor Heterostructures

    Full text link
    We demonstrate the manipulation of the Curie temperature of buried layers of the ferromagnetic semiconductor (Ga,Mn)As using nanolithography to enhance the effect of annealing. Patterning the GaAs-capped ferromagnetic layers into nanowires exposes free surfaces at the sidewalls of the patterned (Ga,Mn)As layers and thus allows the removal of Mn interstitials using annealing. This leads to an enhanced Curie temperature and reduced resistivity compared to unpatterned samples. For a fixed annealing time, the enhancement of the Curie temperature is larger for narrower nanowires.Comment: Submitted to Applied Physics Letters (minor corrections

    Slow spin relaxation in a highly polarized cooperative paramagnet

    Full text link
    We report measurements of the ac susceptibility of the cooperative paramagnet Tb2Ti2O7 in a strong magnetic field. Our data show the expected saturation maximum in chi(T) and also an unexpected low frequency dependence (< 1 Hz) of this peak, suggesting very slow spin relaxations are occurring. Measurements on samples diluted with nonmagnetic Y3+ or Lu3+ and complementary measurements on pure and diluted Dy2Ti2O7 strongly suggest that the relaxation is associated with dipolar spin correlations, representing unusual cooperative behavior in a paramagnetic system.Comment: Accepted for publication in Physical Review Letter

    Quantum-Classical Reentrant Relaxation Crossover in Dy2Ti2O7 Spin-Ice

    Get PDF
    We have studied spin relaxation in the spin ice compound Dy2Ti2O7 through measurements of the a.c. magnetic susceptibility. While the characteristic spin relaxation time is thermally activated at high temperatures, it becomes almost temperature independent below Tcross ~ 13 K, suggesting that quantum tunneling dominates the relaxation process below that temperature. As the low-entropy spin ice state develops below Tice ~ 4 K, the spin relaxation time increases sharply with decreasing temperature, suggesting the emergence of a collective degree of freedom for which thermal relaxation processes again become important as the spins become highly correlated

    Orientational Ordering and Dynamics of Rodlike Polyelectrolytes

    Full text link
    The interplay between electrostatic interactions and orientational correlations is studied for a model system of charged rods positioned on a chain, using Monte Carlo simulation techniques. It is shown that the coupling brings about the notion of {\em electrostatic frustration}, which in turn results in: (i) a rich variety of novel orientational orderings such as chiral phases, and (ii) an inherently slow dynamics characterized by stretched-exponential behavior in the relaxation functions of the system.Comment: 7 pages, 10 figure
    • …
    corecore