153 research outputs found
Covariant Calculation of General Relativistic Effects in an Orbiting Gyroscope Experiment
We carry out a covariant calculation of the measurable relativistic effects
in an orbiting gyroscope experiment. The experiment, currently known as Gravity
Probe B, compares the spin directions of an array of spinning gyroscopes with
the optical axis of a telescope, all housed in a spacecraft that rolls about
the optical axis. The spacecraft is steered so that the telescope always points
toward a known guide star. We calculate the variation in the spin directions
relative to readout loops rigidly fixed in the spacecraft, and express the
variations in terms of quantities that can be measured, to sufficient accuracy,
using an Earth-centered coordinate system. The measurable effects include the
aberration of starlight, the geodetic precession caused by space curvature, the
frame-dragging effect caused by the rotation of the Earth and the deflection of
light by the Sun.Comment: 7 pages, 1 figure, to be submitted to Phys. Rev.
Wave Mechanics of Two Hard Core Quantum Particles in 1-D Box
The wave mechanics of two impenetrable hard core particles in 1-D box is
analyzed. Each particle in the box behaves like an independent entity
represented by a {\it macro-orbital} (a kind of pair waveform). While the
expectation value of their interaction, ,
satisfies (or , with being the size
of the box). The particles in their ground state define a close-packed
arrangement of their wave packets (with , phase position
separation and momentum ) and experience a
mutual repulsive force ({\it zero point repulsion}) which
also tries to expand the box. While the relative dynamics of two particles in
their excited states represents usual collisional motion, the same in their
ground state becomes collisionless. These results have great significance in
determining the correct microscopic understanding of widely different many body
systems.Comment: 12 pages, no figur
Geodetic precession and frame dragging observed far from massive objects and close to a gyroscope
Total precession (geodetic precession and frame dragging) depends on the
velocity of each source of gravitation, which means that it depends on the
choice of the coordinate system. We consider the latter as an anomaly
specifically in the Gravity Probe B experiment, we investigated it and solved
this anomaly. Thus, we proved that if our present expression for the geodetic
precession is correct, then the frame dragging should be 25% less than its
predicted value.Comment: 11 page
The nuclear Schiff moment and time invariance violation in atoms
Parity and time invariance violating (P,T-odd) nuclear forces produce P,T-odd
nuclear moments. In turn, these moments can induce electric dipole moments
(EDMs) in atoms through the mixing of electron wavefunctions of opposite
parity. The nuclear EDM is screened by atomic electrons. The EDM of an atom
with closed electron subshells is induced by the nuclear Schiff moment.
Previously the interaction with the Schiff moment has been defined for a
point-like nucleus. No problems arise with the calculation of the electron
matrix element of this interaction as long as the electrons are considered to
be non-relativistic. However, a more realistic model obviously involves a
nucleus of finite-size and relativistic electrons. In this work we have
calculated the finite nuclear-size and relativistic corrections to the Schiff
moment. The relativistic corrections originate from the electron wavefunctions
and are incorporated into a ``nuclear'' moment, which we term the local dipole
moment. For mercury these corrections amount to about 25%. We have found that
the natural generalization of the electrostatic potential of the Schiff moment
for a finite-size nucleus corresponds to an electric field distribution which,
inside the nucleus, is well approximated as constant and directed along the
nuclear spin, and outside the nucleus is zero. Also in this work the plutonium
atomic EDM is estimated.Comment: 16 pages, 1 figure, minor misprints correcte
Quantum mechanical virial theorem in systems with translational and rotational symmetry
Generalized virial theorem for quantum mechanical nonrelativistic and
relativistic systems with translational and rotational symmetry is derived in
the form of the commutator between the generator of dilations G and the
Hamiltonian H. If the conditions of translational and rotational symmetry
together with the additional conditions of the theorem are satisfied, the
matrix elements of the commutator [G, H] are equal to zero on the subspace of
the Hilbert space. Normalized simultaneous eigenvectors of the particular set
of commuting operators which contains H, J^{2}, J_{z} and additional operators
form an orthonormal basis in this subspace. It is expected that the theorem is
relevant for a large number of quantum mechanical N-particle systems with
translational and rotational symmetry.Comment: 24 pages, accepted for publication in International Journal of
Theoretical Physic
Higgs algebraic symmetry of screened system in a spherical geometry
The orbits and the dynamical symmetries for the screened Coulomb potentials
and isotropic harmonic oscillators have been studied by Wu and Zeng [Z. B. Wu
and J. Y. Zeng, Phys. Rev. A 62,032509 (2000)]. We find the similar properties
in the responding systems in a spherical space, whose dynamical symmetries are
described by Higgs Algebra. There exists a conserved aphelion and perihelion
vector, which, together with angular momentum, constitute the generators of the
geometrical symmetry group at the aphelia and perihelia points .Comment: 8 pages, 1 fi
What information can we obtain from the yield ratio in heavy-ion collisions ?
The recently reported data on the yield ratio in central
rapidity region of heavy-ion collisions are analyzed by theoretical formula
which accounts for Coulomb interaction between central charged fragment (CCF)
consisting of nearly stopped nucleons with effective charge
Z_{\mbox{\scriptsize eff}} and charged pions produced in the same region of
the phase space. The Coulomb wave function method is used instead of the usual
Gamow factor in order to account for the finite production range of pions,
. For Gaussian shape of the pion production sources it results in a
quasi-scaling in and Z_{\mbox{\scriptsize eff}} which makes
determination of parameters and Z_{\mbox{\scriptsize eff}} from the
existing experimental data difficult. Only sufficiently accurate data taken in
the extreme small - region, where this
quasi-scaling is broken, could be used for this purpose.Comment: 7 pages, Latex type, 8 figure
Soft-photon corrections in multi-body meson decays
The effects due to soft-photon emission (and the related virtual corrections)
in multi-body decays of B, D, and K mesons are analysed. We present analytic
expressions for the universal O(alpha) correction factors which can be applied
to all multi-body decay modes where a tight soft-photon energy cut in the
decaying-particle rest-frame is applied. All-order resummations valid in the
limit of small and large velocities of the final-state particles are also
discussed. The phenomenological implications of these correction factors in the
distortion of Dalitz-plot distributions of K -> 3 pi decays are briefly
analysed.Comment: 8 pages, 2 figures (v2: minor modifications - published version
Bound states of neutral particles in external electric fields
Neutral fermions of spin with magnetic moment can interact with
electromagnetic fields through nonminimal coupling. The Dirac--Pauli equation
for such a fermion coupled to a spherically symmetric or central electric field
can be reduced to two simultaneous ordinary differential equations by
separation of variables in spherical coordinates. For a wide variety of central
electric fields, bound-state solutions of critical energy values can be found
analytically. The degeneracy of these energy levels turns out to be numerably
infinite. This reveals the possibility of condensing infinitely many fermions
into a single energy level. For radially constant and radially linear electric
fields, the system of ordinary differential equations can be completely solved,
and all bound-state solutions are obtained in closed forms. The radially
constant field supports scattering solutions as well. For radially linear
fields, more energy levels (in addition to the critical one) are infinitely
degenerate. The simultaneous presence of central magnetic and electric fields
is discussed.Comment: REVTeX, 14 pages, no figur
Searches for violation of fundamental time reversal and space reflection symmetries in solid state experiments
The electric dipole moment (EDM) of a particle violates both time reversal
(T) and space reflection (P) symmetries. There have been recent suggestions for
searches of the electron EDM using solid state experiments [1,2]. These
experiments could improve the sensitivity compared to present atomic and
molecular experiments by several orders of magnitude. In the present paper we
calculate the expected effect. We also suggest that this kind of experiment is
sensitive to T,P-violation in nuclear forces and calculate effects caused by
the nuclear Schiff moment.
The compounds under consideration contain magnetic Gd ions and oxygen
O ions. We demonstrate that the main mechanism for the T,P-odd effects
is related to the penetration of the Oxygen 2p-electrons to the Gd core. All
the effects are related to the deformation of the crystal lattice.Comment: 13 pages, 6 figure
- …