3,742 research outputs found
The Cosmological Kibble Mechanism in the Laboratory: String Formation in Liquid Crystals
We have observed the production of strings (disclination lines and loops) via
the Kibble mechanism of domain (bubble) formation in the isotropic to nematic
phase transition of a sample of uniaxial nematic liquid crystal. The probablity
of string formation per bubble is measured to be . This is in
good agreement with the theoretical value expected in two dimensions
for the order parameter space of a simple uniaxial nematic
liquid crystal.Comment: 17 pages, in TEX, 2 figures (not included, available on request
Sequential bilateral central retinal vein occlusions in a cystic fibrosis patient with hyperhomocysteinemia and hypergamma-globulinemia
PURPOSE: To report a case of sequential bilateral central retinal vein occlusions in a cystic fibrosis patient with hyperhomocysteinemia and hypergamma-globulinemia over 6 years of follow up. METHODS: Observational case report of one patient. RESULTS: A 31 year-old male with a history of cystic fibrosis presented with a central retinal vein occlusion (CRVO) in his left eye, followed by a CRVO in his right eye 4 years later. His medical workup was significant for elevated levels of homocysteine and gamma-globulins, which coincided with initiation of intravenous immunoglobulin (IVIG) proceeding his second CRVO. CONCLUSIONS: We describe a case of sequential bilateral central retinal vein occlusions in a cystic fibrosis patient with hyperhomocysteinemia and hypergamma-globulinemia over 6 years of follow up and discuss the important role of these risk factors in retinal venous occlusive disease
The Universal Gaussian in Soliton Tails
We show that in a large class of equations, solitons formed from generic
initial conditions do not have infinitely long exponential tails, but are
truncated by a region of Gaussian decay. This phenomenon makes it possible to
treat solitons as localized, individual objects. For the case of the KdV
equation, we show how the Gaussian decay emerges in the inverse scattering
formalism.Comment: 4 pages, 2 figures, revtex with eps
Recommended from our members
Transport, Interfaces, and Modeling in Amorphous Silicon Based Solar Cells: Final Technical Report, 11 February 2002 - 30 September 2006
Results for a-Si characteristics/modeling; photocarrier drift mobilities in a-Si;H, ..mu..c-Si:H, CIGS; hole-conducting polymers as p-layer for a-Si and c-Si; IR spectra of p/i and n/i interfaces in a-Si
Femtosecond pulses and dynamics of molecular photoexcitation: RbCs example
We investigate the dynamics of molecular photoexcitation by unchirped
femtosecond laser pulses using RbCs as a model system. This study is motivated
by a goal of optimizing a two-color scheme of transferring
vibrationally-excited ultracold molecules to their absolute ground state. In
this scheme the molecules are initially produced by photoassociation or
magnetoassociation in bound vibrational levels close to the first dissociation
threshold. We analyze here the first step of the two-color path as a function
of pulse intensity from the low-field to the high-field regime. We use two
different approaches, a global one, the 'Wavepacket' method, and a restricted
one, the 'Level by Level' method where the number of vibrational levels is
limited to a small subset. The comparison between the results of the two
approaches allows one to gain qualitative insights into the complex dynamics of
the high-field regime. In particular, we emphasize the non-trivial and
important role of far-from-resonance levels which are adiabatically excited
through 'vertical' transitions with a large Franck-Condon factor. We also point
out spectacular excitation blockade due to the presence of a quasi-degenerate
level in the lower electronic state. We conclude that selective transfer with
femtosecond pulses is possible in the low-field regime only. Finally, we extend
our single-pulse analysis and examine population transfer induced by coherent
trains of low-intensity femtosecond pulses.Comment: 25 pages, 12 figure
Sudden To Adiabatic Transition in Beta Decay
We discuss effects in beta decays at very low beta energies, of the order of
the kinetic energies of atomic electrons. As the beta energy is lowered the
atomic response changes from sudden to adiabatic. As a consequence, the beta
decay rate increases slightly and the ejection of atomic electrons (shake off)
and subsequent production of X rays is turned off. We estimate the transition
energy and the change in decay rate. The rate increase is largest in heavy
atoms, which have a small Q value in their decay. The X ray switch-off is
independent of Q value.Comment: 6 pages LaTe
Intrinsic and Rashba Spin-orbit Interactions in Graphene Sheets
Starting from a microscopic tight-binding model and using second order
perturbation theory, we derive explicit expressions for the intrinsic and
Rashba spin-orbit interaction induced gaps in the Dirac-like low-energy band
structure of an isolated graphene sheet. The Rashba interaction parameter is
first order in the atomic carbon spin-orbit coupling strength and first
order in the external electric field perpendicular to the graphene plane,
whereas the intrinsic spin-orbit interaction which survives at E=0 is second
order in . The spin-orbit terms in the low-energy effective Hamiltonian
have the form proposed recently by Kane and Mele. \textit{Ab initio} electronic
structure calculations were performed as a partial check on the validity of the
tight-binding model.Comment: 5 pages, 2 figures; typos corrected, references update
Bragg Scattering as a Probe of Atomic Wavefunctions and Quantum Phase Transitions in Optical Lattices
We have observed Bragg scattering of photons from quantum degenerate
Rb atoms in a three-dimensional optical lattice. Bragg scattered light
directly probes the microscopic crystal structure and atomic wavefunction whose
position and momentum width is Heisenberg-limited. The spatial coherence of the
wavefunction leads to revivals in the Bragg scattered light due to the atomic
Talbot effect. The decay of revivals across the superfluid to Mott insulator
transition indicates the loss of superfluid coherence.Comment: 5 pages, 4 figure
Theoretical analysis of the transmission phase shift of a quantum dot in the presence of Kondo correlations
We study the effects of Kondo correlations on the transmission phase shift of
a quantum dot coupled to two leads in comparison with the experimental
determinations made by Aharonov-Bohm (AB) quantum interferometry. We propose
here a theoretical interpretation of these results based on scattering theory
combined with Bethe ansatz calculations. We show that there is a factor of 2
difference between the phase of the S-matrix responsible for the shift in the
AB oscillations, and the one controlling the conductance. Quantitative
agreement is obtained with experimental results for two different values of the
coupling to the leads.Comment: 4 pages, 4 figures, accepted for publication in Physical Review
Letter
- …