64 research outputs found

    Comprehensive plasma proteomic profiling reveals biomarkers for active tuberculosis

    Get PDF
    BACKGROUND. Tuberculosis (TB) kills more people than any other infection, and new diagnostic tests to identify active cases are required. We aimed to discover and verify novel markers for TB in nondepleted plasma. / METHODS. We applied an optimized quantitative proteomics discovery methodology based on multidimensional and orthogonal liquid chromatographic separation combined with high-resolution mass spectrometry to study nondepleted plasma of 11 patients with active TB compared with 10 healthy controls. Prioritized candidates were verified in independent UK (n = 118) and South African cohorts (n = 203). / RESULTS. We generated the most comprehensive TB plasma proteome to date, profiling 5022 proteins spanning 11 orders-of-magnitude concentration range with diverse biochemical and molecular properties. We analyzed the predominantly low–molecular weight subproteome, identifying 46 proteins with significantly increased and 90 with decreased abundance (peptide FDR ≤ 1%, q ≤ 0.05). Verification was performed for novel candidate biomarkers (CFHR5, ILF2) in 2 independent cohorts. Receiver operating characteristics analyses using a 5-protein panel (CFHR5, LRG1, CRP, LBP, and SAA1) exhibited discriminatory power in distinguishing TB from other respiratory diseases (AUC = 0.81). / CONCLUSION. We report the most comprehensive TB plasma proteome to date, identifying novel markers with verification in 2 independent cohorts, leading to a 5-protein biosignature with potential to improve TB diagnosis. With further development, these biomarkers have potential as a diagnostic triage test. / FUNDING. Colciencias, Medical Research Council, Innovate UK, NIHR, Academy of Medical Sciences, Program for Advanced Research Capacities for AIDS, Wellcome Centre for Infectious Diseases Research

    In vivo and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug

    Get PDF
    The anti-tumour effects and mechanism of action of combretastatin A-4 and its prodrug, combretastatin A-4 disodium phosphate, were examined in subcutaneous and orthotopically transplanted experimental colon tumour models. Additionally, the ability of these compounds to directly interfere with endothelial cell behaviour was also examined in HUVEC cultures. Combretastatin A-4 (150 mg kg–1, intraperitoneally (i.p.)) and its water-soluble prodrug (100 mg kg–1, i.p.) caused almost complete vascular shutdown (at 4 h), extensive haemorrhagic necrosis which started at 1 h after treatment and significant tumour growth delay in MAC 15A subcutaneous (s.c.) colon tumours. Similar vascular effects were obtained in MAC 15 orthotopic tumours and SW620 human colon tumour xenografts treated with the prodrug. More importantly, in the orthotopic models, necrosis was seen in vascularized metastatic deposits but not in avascular secondary deposits. The possible mechanism giving rise to these effects was examined in HUVEC cells. Here cellular networks formed in type I calf-skin collagen layers and these networks were completely disrupted when incubated with a non-cytotoxic concentration of combretastatin A-4 or its prodrug. This effect started at 4 h and was complete by 24 h. The same non-cytotoxic concentrations resulted in disorganization of F-actin and β-tubulin at 1 h after treatment. In conclusion, combretastatin A-4 and its prodrug caused extensive necrosis in MAC 15A s.c. and orthotopic colon cancer and metastases, resulting in anti-tumour effects. Necrosis was not seen in avascular tumour nodules, suggesting a vascular mechanism of action. © 1999 Cancer Research Campaig

    Trends in all cause and viral liver disease-related hospitalizations in people with hepatitis B or C: a population-based linkage study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have reported an excess burden of cancer and mortality in populations with chronic hepatitis B (HBV) or C (HCV), but there are limited data comparing hospitalization rates. In this study, we compared hospitalization rates for all causes and viral liver disease in people notified with HBV or HCV in New South Wales (NSW), Australia.</p> <p>Methods</p> <p>HBV and HCV notifications were linked to their hospital (July 2000-June 2006), HIV and death records. Standardized hospitalization ratios (SHRs) were calculated using rates for the NSW population. Random effects Poisson regression was used to examine temporal trends.</p> <p>Results</p> <p>The SHR for all causes and non alcoholic liver disease was two-fold higher in the HCV cohort compared with the HBV cohort (SHRs 1.4 (95%CI: 1.4-1.4) v 0.6 (95%CI: 0.6-0.6) and 14.0 (95%CI: 12.7-15.4) v 5.4 (95%CI: 4.5-6.4), respectively), whilst the opposite was seen for primary liver cancer (SHRs 16.2 (95%CI: 13.8-19.1) v 29.1 (95%CI: 24.7-34.2)). HIV co-infection doubled the SHR except for primary liver cancer in the HCV/HIV cohort. In HBV and HCV mono-infected cohorts, all cause hospitalization rates declined and primary liver cancer rates increased, whilst rates for non alcoholic liver disease increased by 9% in the HCV cohort but decreased by 14% in the HBV cohort (<it>P </it>< 0.001).</p> <p>Conclusion</p> <p>Hospital-related morbidity overall and for non alcoholic liver disease was considerably higher for HCV than HBV. Improved treatment of advanced HBV-related liver disease may explain why HBV liver-related morbidity declined. In contrast, HCV liver-related morbidity increased and improved treatments, especially for advanced liver disease, and higher levels of treatment uptake are required to reverse this trend.</p

    The Ketogenic Diet Is an Effective Adjuvant to Radiation Therapy for the Treatment of Malignant Glioma

    Get PDF
    INTRODUCTION: The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that alters metabolism by increasing the level of ketone bodies in the blood. KetoCal® (KC) is a nutritionally complete, commercially available 4:1 (fat:carbohydrate+protein) ketogenic formula that is an effective non-pharmacologic treatment for the management of refractory pediatric epilepsy. Diet-induced ketosis causes changes to brain homeostasis that have potential for the treatment of other neurological diseases such as malignant gliomas. METHODS: We used an intracranial bioluminescent mouse model of malignant glioma. Following implantation animals were maintained on standard diet (SD) or KC. The mice received 2×4 Gy of whole brain radiation and tumor growth was followed by in vivo imaging. RESULTS: Animals fed KC had elevated levels of β-hydroxybutyrate (p = 0.0173) and an increased median survival of approximately 5 days relative to animals maintained on SD. KC plus radiation treatment were more than additive, and in 9 of 11 irradiated animals maintained on KC the bioluminescent signal from the tumor cells diminished below the level of detection (p<0.0001). Animals were switched to SD 101 days after implantation and no signs of tumor recurrence were seen for over 200 days. CONCLUSIONS: KC significantly enhances the anti-tumor effect of radiation. This suggests that cellular metabolic alterations induced through KC may be useful as an adjuvant to the current standard of care for the treatment of human malignant gliomas
    • …
    corecore