5 research outputs found

    A method to assess primary stability of acetabular components in association with bone defects

    Get PDF
    The objectives of this study were to develop a simplified acetabular bone defect model based on a representative clinical case, derive four bone defect increments from the simplified defect to establish a step‐wise testing procedure, and analyze the impact of bone defect and bone defect filling on primary stability of a press‐fit cup in the smallest defined bone defect increment. The original bone defect was approximated with nine reaming procedures and by exclusion of specific procedures, four defect increments were derived. The smallest increment was used in an artificial acetabular test model to test primary stability of a press‐fit cup in combination with bone graft substitute (BGS). A primary acetabular test model and a defect model without filling were used as reference. Load was applied in direction of level walking in sinusoidal waveform with an incrementally increasing maximum load (300 N/1000 cycles from 600 to 3000 N). Relative motions (inducible displacement, migration, and total motion) between cup and test model were assessed with an optical measurement system. Original and simplified bone defect volume showed a conformity of 99%. Maximum total motion in the primary setup at 600 N (45.7 ± 5.6 µm) was in a range comparable to tests in human donor specimens (36.0 ± 16.8 µm). Primary stability was reduced by the bone defect, but could mostly be reestablished by BGS‐filling. The presented method could be used as platform to test and compare different treatment strategies for increasing bone defect severity in a standardized way

    Calcium phosphate bone graft substitutes with high mechanical load capacity and high degree of interconnecting porosity

    No full text
    Bone graft substitutes in orthopedic applications have to fulfill various demanding requirements. Most calcium phosphate (CaP) bone graft substitutes are highly porous to achieve bone regeneration, but typically lack mechanical stability. This study presents a novel approach, in which a scaffold structure with appropriate properties for bone regeneration emerges from the space between specifically shaped granules. The granule types were tetrapods (TEPO) and pyramids (PYRA), which were compared to porous CaP granules (CALC) and morselized bone chips (BC). Bulk materials of the granules were mechanically loaded with a peak pressure of 4 MP; i.e., comparable to the load occurring behind an acetabular cup. Mechanical loading reduced the volume of CALC and BC considerably (89% and 85%, respectively), indicating a collapse of the macroporous structure. Volumes of TEPO and PYRA remained almost constant (94% and 98%, respectively). After loading, the porosity was highest for BC (46%), lowest for CALC (25%) and comparable for TEPO and PYRA (37%). The pore spaces of TEPO and PYRA were highly interconnected in a way that a virtual object with a diameter of 150 µm could access 34% of the TEPO volume and 36% of the PYRA volume. This study shows that a bulk of dense CaP granules in form of tetrapods and pyramids can create a scaffold structure with load capacities suitable for the regeneration of an acetabular bone defec

    Quantitative assessment of acetabular bone defects: A study of 50 computed tomography data sets.

    Get PDF
    ObjectivesAcetabular bone defect quantification and classification is still challenging. The objectives of this study were to suggest and define parameters for the quantification of acetabular bone defects, to analyze 50 bone defects and to present the results and correlations between the defined parameters.MethodsThe analysis was based on CT-data of pelvises with acetabular bone defects and their reconstruction via a statistical shape model. Based on this data, bone volume loss and new bone formation were analyzed in four sectors (cranial roof, anterior column, posterior column, and medial wall). In addition, ovality of the acetabulum, lateral center-edge angle, implant migration, and presence of wall defects were analyzed and correlations between the different parameters were assessed.ResultsBone volume loss was found in all sectors and was multidirectional in most cases. Highest relative bone volume loss was found in the medial wall with median and [25, 75]-percentile values of 72.8 [50.6, 95.0] %. Ovality, given as the length to width ratio of the acetabulum, was 1.3 [1.1, 1.4] with a maximum of 2.0, which indicated an oval shape of the defect acetabulum. Lateral center-edge angle was 30.4° [21.5°, 40.4°], which indicated a wide range of roof coverage in the defect acetabulum. Total implant migration was 25.3 [14.8, 32.7] mm, whereby cranial was the most common direction. 49/50 cases showed a wall defect in at least one sector. It was observed that implant migration in cranial direction was associated with relative bone volume loss in cranial roof (R = 0.74) and ovality (R = 0.67).ConclusionWithin this study, 50 pelvises with acetabular bone defects were successfully analyzed using six parameters. This could provide the basis for a novel classification concept which would represent a quantitative, objective, unambiguous, and reproducible classification approach for acetabular bone defects

    Analysis of Carbon Fiber Reinforced PEEK Hinge Mechanism Articulation Components in a Rotating Hinge Knee Design: A Comparison of In Vitro and Retrieval Findings

    Get PDF
    Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK) represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK) system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens (n=3), whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo

    Primary stability of a press‐fit cup in combination with impaction grafting in an acetabular defect model

    No full text
    The objectives of this study were to (a) assess primary stability of a press-fit cup in a simplified acetabular defect model, filled with compacted cancellous bone chips, and (b) to compare the results with primary stability of a press-fit cup combined with two different types of bone graft substitute in the same defect model. A previously developed acetabular test model made of polyurethane foam was used, in which a mainly medial contained defect was implemented. Three test groups (N = 6 each) were prepared: Cancellous bone chips (bone chips), tricalciumphosphate tetrapods + collagen matrix (tetrapods + coll), bioactive glass S53P4 + polyethylene glycol-glycerol matrix (b.a.glass + PEG). Each material was compacted into the acetabulum and a press-fit cup was implanted. The specimens were loaded dynamically in the direction of the maximum resultant force during level walking. Relative motion between cup and test model was assessed with an optical measurement system. At the last load step (3000 N), inducible displacement was highest for bone chips with median [25th percentile;75th percentile] value of 113 [110;114] mu m and lowest forb.a.glass + PEGwith 91 [89;93] mu m. Migration at this load step was highest forb.a.glass + PEGwith 868 [845;936] mu m and lowest fortetrapods + collwith 491 [487;497] mu m. The results show a comparable behavior under load oftetrapods + colland bone chips and suggest thattetrapods + collcould be an attractive alternative to bone chips. However, so far, this was found for one specific defect type and primary stability should be further investigated in additional/more severe defects
    corecore