4 research outputs found

    Can Grain Size Reduction Initiate Transform Faults?—Insights From a 3-D Numerical Study

    No full text
    Oceanic transform faults formed at mid-ocean ridges are intrinsic features of modern plate tectonics. Nevertheless, numerical mantle convection models typically struggle to reproduce the strike-slip movement observed along transform faults on Earth. Instead, mantle convection models tend to produce mostly convergent and divergent plate boundaries. Based on regional visco-(elasto)-plastic thermomechanical models it has been demonstrated that a strong strain-induced weakening of rocks has to be assumed in order to initiate and stabilize the characteristic orthogonal ridge-transform spreading patterns. However, the physical origin of such intense rheological weakening remains unclear. Considering that in nature oceanic transform faults show a strongly reduced grain size, a potentially strong influence of grain size reduction processes on the rheological strength of these structures can be assumed. Employing 3-D thermomechanical visco-plastic models, we study the effect of grain size reduction on oceanic transform fault initiation. Our results show that ductile weakening induced by grain size reduction indeed results in sufficient localization to initiate a transform fault. Without any additional weakening mechanisms, transform faults in our models remain stable up to 2 Myr. We identify parameters that affect stability and longevity of the transform fault during the initiation phase, such as the grain damage formulation and grain growth prefactor. In our models, transform faults initiate in the brittle crust and propagate downward, thus indicating a top-down initiated localization process. The observed grain size, rheology, and strain rate inside the shear zone of our models agree well with observations in nature; however, the longevity of natural examples cannot be reached. ©2020. American Geophysical Union. All Rights Reserved

    Magmatism controls global oceanic transform fault topography

    No full text
    Abstract Oceanic transform faults play an essential role in plate tectonics. Yet to date, there is no unifying explanation for the global trend in broad-scale transform fault topography, ranging from deep valleys to shallow topographic highs. Using three-dimensional numerical models, we find that spreading-rate dependent magmatism within the transform domain exerts a first-order control on the observed spectrum of transform fault depths. Low-rate magmatism results in deep transform valleys caused by transform-parallel tectonic stretching; intermediate-rate magmatism fully accommodates far-field stretching, but strike-slip motion induces across-transform tension, producing transform strength dependent shallow valleys; high-rate magmatism produces elevated transform zones due to local compression. Our models also address the observation that fracture zones are consistently shallower than their adjacent transform fault zones. These results suggest that plate motion change is not a necessary condition for reproducing oceanic transform topography and that oceanic transform faults are not simple conservative strike-slip plate boundaries

    How transform fault shear influences where detachment faults form near mid-ocean ridges

    No full text
    Abstract Oceanic detachment faults represent an end-member form of seafloor creation, associated with relatively weak magmatism at slow-spreading mid-ocean ridges. We use 3-D numerical models to investigate the underlying mechanisms for why detachment faults predominantly form on the transform side (inside corner) of a ridge-transform intersection as opposed to the fracture zone side (outside corner). One hypothesis for this behavior is that the slipping, and hence weaker, transform fault allows for the detachment fault to form on the inside corner, and a stronger fracture zone prevents the detachment fault from forming on the outside corner. However, the results of our numerical models, which simulate different frictional strengths in the transform and fracture zone, do not support the first hypothesis. Instead, the model results, combined with evidence from rock physics experiments, suggest that shear-stress on transform fault generates excess lithospheric tension that promotes detachment faulting on the inside corner
    corecore