14 research outputs found

    Mechanical examinations on dental implants with porous titanium coating

    No full text
    Due to its good biocompatibility, porous titanium is an interesting material for biomedical applications. Bone tissue can grow inside the porous structure and maintain a long and stable connection between the implant and the human bone. To investigate its long term stability, the mechanical behavior of porous titanium was tested under static and dynamic conditions and was compared to human bone tissue. A promising application of this material is the coating of dental implants. A manufacturing technique was developed and implants were produced. These implants were fatigue tested according to modified ISO 14801 and the micro structural change was examined. The fatigue test was statically modeled using finite element analysis (FEA). The results show that the implants resist a continuous load which is comparable to the loading conditions in the human jaw. The experiments show that the porous titanium has bone-like mechanical properties. Additionally the porous titanium shows an anisotropic behavior of its mechanical properties depending on the alignment of the pores. Finally, other potential applications of porous titanium are outlined
    corecore