45 research outputs found

    Antiferromagnetic order in multi-band Hubbard models for iron-pnictides

    Full text link
    We investigate multi-band Hubbard models for the three iron 3dd-t2gt_{2g} bands and the two iron 3dd-ege_g bands in LaOFeAs{\rm La O Fe As} by means of the Gutzwiller variational theory. Our analysis of the paramagnetic ground state shows that neither Hartree--Fock mean-field theories nor effective spin models describe these systems adequately. In contrast to Hartree--Fock-type approaches, the Gutzwiller theory predicts that antiferromagnetic order requires substantial values of the local Hund's-rule exchange interaction. For the three-band model, the antiferromagnetic moment fits experimental data for a broad range of interaction parameters. However, for the more appropriate five-band model, the iron ege_g electrons polarize the t2gt_{2g} electrons and they substantially contribute to the ordered moment.Comment: 4 pages, 4 figure

    Magnetic order in orbital models of the iron pnictides

    Full text link
    We examine the appearance of the experimentally-observed stripe spin-density-wave magnetic order in five different orbital models of the iron pnictide parent compounds. A restricted mean-field ansatz is used to determine the magnetic phase diagram of each model. Using the random phase approximation, we then check this phase diagram by evaluating the static spin susceptibility in the paramagnetic state close to the mean-field phase boundaries. The momenta for which the susceptibility is peaked indicate in an unbiased way the actual ordering vector of the nearby mean-field state. The dominant orbitally resolved contributions to the spin susceptibility are also examined to determine the origin of the magnetic instability. We find that the observed stripe magnetic order is possible in four of the models, but it is extremely sensitive to the degree of the nesting between the electron and hole Fermi pockets. In the more realistic five-orbital models, this order competes with a strong-coupling incommensurate state which appears to be controlled by details of the electronic structure below the Fermi energy. We conclude by discussing the implications of our work for the origin of the magnetic order in the pnictides.Comment: 19 pages, 19 figures; published version, typos corrected, references adde

    CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands

    Full text link
    The CEFLES2 campaign during the Carbo Europe Regional Experiment Strategy was designed to provide simultaneous airborne measurements of solar induced fluorescence and CO2 fluxes. It was combined with extensive ground-based quantification of leaf- and canopy-level processes in support of ESA's Candidate Earth Explorer Mission of the "Fluorescence Explorer" (FLEX). The aim of this campaign was to test if fluorescence signal detected from an airborne platform can be used to improve estimates of plant mediated exchange on the mesoscale. Canopy fluorescence was quantified from four airborne platforms using a combination of novel sensors: (i) the prototype airborne sensor AirFLEX quantified fluorescence in the oxygen A and B bands, (ii) a hyperspectral spectrometer (ASD) measured reflectance along transects during 12 day courses, (iii) spatially high resolution georeferenced hyperspectral data cubes containing the whole optical spectrum and the thermal region were gathered with an AHS sensor, and (iv) the first employment of the high performance imaging spectrometer HYPER delivered spatially explicit and multi-temporal transects across the whole region. During three measurement periods in April, June and September 2007 structural, functional and radiometric characteristics of more than 20 different vegetation types in the Les Landes region, Southwest France, were extensively characterized on the ground. The campaign concept focussed especially on quantifying plant mediated exchange processes (photosynthetic electron transport, CO2 uptake, evapotranspiration) and fluorescence emission. The comparison between passive sun-induced fluorescence and active laser-induced fluorescence was performed on a corn canopy in the daily cycle and under desiccation stress. Both techniques show good agreement in detecting stress induced fluorescence change at the 760 nm band. On the large scale, airborne and ground-level measurements of fluorescence were compared on several vegetation types supporting the scaling of this novel remote sensing signal. The multi-scale design of the four airborne radiometric measurements along with extensive ground activities fosters a nested approach to quantify photosynthetic efficiency and gross primary productivity (GPP) from passive fluorescence

    Conservation of Complex Nuclear Localization Signals Utilizing Classical and Non-Classical Nuclear Import Pathways in LANA Homologs of KSHV and RFHV

    Get PDF
    ORF73 latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) is targeted to the nucleus of infected cells where it binds to chromatin and mediates viral episome persistence, interacts with cellular proteins and plays a role in latency and tumorigenesis. A structurally related LANA homolog has been identified in the retroperitoneal fibromatosis herpesvirus (RFHV), the macaque homolog of KSHV. Here, we report the evolutionary and functional conservation of a novel bi-functional nuclear localization signal (NLS) in KSHV and RFHV LANA. N-terminal peptides from both proteins were fused to EGFP or double EGFP fusions to examine their ability to induce nuclear transport of a heterologous protein. In addition, GST-pull down experiments were used to analyze the ability of LANA peptides to interact with members of the karyopherin family of nuclear transport receptors. Our studies revealed that both LANA proteins contain an N-terminal arginine/glycine (RG)-rich domain spanning a conserved chromatin-binding motif, which binds directly to importin β1 in a RanGTP-sensitive manner and serves as an NLS in the importin β1-mediated non-classical nuclear import pathway. Embedded within this domain is a conserved lysine/arginine-(KR)-rich bipartite motif that binds directly to multiple members of the importin α family of nuclear import adaptors in a RanGTP-insensitive manner and serves as an NLS in the classical importin α/β-mediated nuclear import pathway. The positioning of a classical bipartite kr-NLS embedded within a non-classical rg-NLS is a unique arrangement in these viral proteins, whose nuclear localization is critical to their functionality and to the virus life cycle. The ability to interact with multiple import receptors provides alternate pathways for nuclear localization of LANA. Since different import receptors can import cargo to distinct subnuclear compartments, a multifunctional NLS may provide LANA with an increased ability to interact with different nuclear components in its multifunctional role to maintain viral latency

    Understanding Novel Superconductors with Ab Initio Calculations

    Full text link
    This chapter gives an overview of the progress in the field of computational superconductivity. Following the MgB2 discovery (2001), there has been an impressive acceleration in the development of methods based on Density Functional Theory to compute the critical temperature and other physical properties of actual superconductors from first-principles. State-of-the-art ab-initio methods have reached predictive accuracy for conventional (phonon-mediated) superconductors, and substantial progress is being made also for unconventional superconductors. The aim of this chapter is to give an overview of the existing computational methods for superconductivity, and present selected examples of material discoveries that exemplify the main advancements.Comment: 38 pages, 10 figures, Contribution to Springer Handbook of Materials Modellin

    Linking photosynthesis and sun-induced fluorescence at sub-daily to seasonal scales

    No full text
    Due to its close link to the photosynthetic process, sun-induced chlorophyll fluorescence (F) opens new possibilities to study dynamics of photosynthetic light reactions and to quantify CO2 assimilation rates. Although recent studies show that F is linearly related to gross primary production (GPP) on coarse spatial and temporal scales, it is argued that this relationship may be mainly driven by seasonal changes in absorbed photochemical active radiation (APAR) and less by the plant light use efficiency (LUE).In this work a high-resolution spectrometer was used to continuously measure red and far-red fluorescence and different reflectance indices within a sugar beet field during the growing season in 2015. Diurnal and seasonal developments were compared to eddy covariance derived GPP.Additionally, part of the time series coincided with a heatwave. The induced drought stress allowed us to observe F and its relationship to GPP under changing environmental conditions during the seasonal cycle.Across the season a strong linear relationship between GPP and F760 was found. This relationship however, was mainly driven by changes in APAR and was strongly reduced under drought conditions. We could show that far-red fluorescence yield can explain 59% of the diurnal and 79% of the seasonal variance in the light use efficiency. However, an even stronger relationship between FY760 and the structural vegetation index MTVI2 was found, implying that FY760 is affected by seasonal structural changes of the canopy. Nevertheless, the seasonally de-trended FY760 and PRI show that they share strong interdependencies with seasonal and diurnal LUE, in particular under drought stress conditions
    corecore