1,173 research outputs found
Internal Energy of the Potts model on the Triangular Lattice with Two- and Three-body Interactions
We calculate the internal energy of the Potts model on the triangular lattice
with two- and three-body interactions at the transition point satisfying
certain conditions for coupling constants. The method is a duality
transformation. Therefore we have to make assumptions on uniqueness of the
transition point and that the transition is of second order. These assumptions
have been verified to hold by numerical simulations for q=2, 3 and 4, and our
results for the internal energy are expected to be exact in these cases.Comment: 9 pages, 4 figure
Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO
We apply ultrafast X-ray diffraction with femtosecond temporal resolution to
monitor the lattice dynamics in a thin film of multiferroic BiFeO after
above-bandgap photoexcitation. The sound-velocity limited evolution of the
observed lattice strains indicates a quasi-instantaneous photoinduced stress
which decays on a nanosecond time scale. This stress exhibits an inhomogeneous
spatial profile evidenced by the broadening of the Bragg peak. These new data
require substantial modification of existing models of photogenerated stresses
in BiFeO: the relevant excited charge carriers must remain localized to be
consistent with the data
Proof of Bose-Einstein Condensation for Dilute Trapped Gases
The ground state of bosonic atoms in a trap has been shown experimentally to
display Bose-Einstein condensation (BEC). We prove this fact theoretically for
bosons with two-body repulsive interaction potentials in the dilute limit,
starting from the basic Schroedinger equation; the condensation is 100% into
the state that minimizes the Gross-Pitaevskii energy functional. This is the
first rigorous proof of BEC in a physically realistic, continuum model.Comment: Revised version with some simplifications and clarifications. To
appear in Phys. Rev. Let
Monte Carlo Study of an Extended 3-State Potts Model on the Triangular Lattice
By introducing a chiral term into the Hamiltonian of the 3-state Potts model
on a triangular lattice additional symmetries are achieved between the
clockwise and anticlockwise states and the ferromagnetic state. This model is
investigated using Monte Carlo methods. We investigate the full phase diagram
and find evidence for a line tricritical points separating the ferromagnetic
and antiferromagnetic phases.Comment: 6 pages, 10 figure
Simplified Langevin approach to the Peyrard-Bishop-Dauxois model of DNA
A simple Langevin approach is used to study stationary properties of the
Peyrard-Bishop-Dauxois model for DNA, allowing known properties to be recovered
in an easy way. Results are shown for the denaturation transition in
homogeneous samples, for which some implications, so far overlooked, of an
analogy with equilibrium wetting transitions are highlighted. This analogy
implies that the order-parameter, asymptotically, exhibits a second order
transition even if it may be very abrupt for non-zero values of the stiffness
parameter. Not surprisingly, we also find that for heterogeneous DNA, within
this model the largest bubbles in the pre-melting stage appear in
adenine-thymine rich regions, while we suggest the possibility of some sort of
not strictly local effects owing to the merging of bubbles.Comment: 4 pages, 2 figure
Possibility of long-range order in clean mesoscopic cylinders
A microscopic Hamiltonian of the magnetostatic interaction is discussed. This
long-range interaction can play an important role in mesoscopic systems leading
to an ordered ground state.
The self-consistent mean field approximation of the magnetostatic interaction
is performed to give an effective Hamiltonian from which the spontaneous,
self-sustaining currents can be obtained.
To go beyond the mean field approximation the mean square fluctuation of the
total momentum is calculated and its influence on self-sustaining currents in
mesoscopic cylinders with quasi-1D and quasi-2D conduction is considered. Then,
by the use of the microscopic Hamiltonian of the magnetostatic interaction for
a set of stacked rings, the problem of long-range order is discussed. The
temperature below which the system is in an ordered state is
determined.Comment: 14 pages, REVTeX, 5 figures, in print in Phys. Rev.
Interfacial fluctuations near the critical filling transition
We propose a method to describe the short-distance behavior of an interface
fluctuating in the presence of the wedge-shaped substrate near the critical
filling transition. Two different length scales determined by the average
height of the interface at the wedge center can be identified. On one length
scale the one-dimensional approximation of Parry et al. \cite{Parry} which
allows to find the interfacial critical exponents is extracted from the full
description. On the other scale the short-distance fluctuations are analyzed by
the mean-field theory.Comment: 13 pages, 3 figure
Droplet shapes on structured substrates and conformal invariance
We consider the finite-size scaling of equilibrium droplet shapes for fluid
adsorption (at bulk two-phase co-existence) on heterogeneous substrates and
also in wedge geometries in which only a finite domain of the
substrate is completely wet. For three-dimensional systems with short-ranged
forces we use renormalization group ideas to establish that both the shape of
the droplet height and the height-height correlations can be understood from
the conformal invariance of an appropriate operator. This allows us to predict
the explicit scaling form of the droplet height for a number of different
domain shapes. For systems with long-ranged forces, conformal invariance is not
obeyed but the droplet shape is still shown to exhibit strong scaling
behaviour. We argue that droplet formation in heterogeneous wedge geometries
also shows a number of different scaling regimes depending on the range of the
forces. The conformal invariance of the wedge droplet shape for short-ranged
forces is shown explicitly.Comment: 20 pages, 7 figures. (Submitted to J.Phys.:Cond.Mat.
- …