68 research outputs found

    Thirdhand Tobacco Smoke: Emerging Evidence and Arguments for a Multidisciplinary Research Agenda

    Get PDF
    There is broad consensus regarding the health impact of tobacco use and secondhand smoke exposure, yet considerable ambiguity exists about the nature and consequences of thirdhand smoke (THS). We introduce definitions of THS and THS exposure and review recent findings about constituents, indoor sorption-desorption dynamics, and transformations of THS; distribution and persistence of THS in residential settings; implications for pathways of exposure; potential clinical significance and health effects; and behavioral and policy issues that affect and are affected by THS. Physical and chemical transformations of tobacco smoke pollutants take place over time scales ranging from seconds to months and include the creation of secondary pollutants that in some cases are more toxic (e.g., tobacco-specific nitrosamines). THS persists in real-world residential settings in the air, dust, and surfaces and is associated with elevated levels of nicotine on hands and cotinine in urine of nonsmokers residing in homes previously occupied by smokers. Much still needs to be learned about the chemistry, exposure, toxicology, health risks, and policy implications of THS. The existing evidence on THS provides strong support for pursuing a programmatic research agenda to close gaps in our current understanding of the chemistry, exposure, toxicology, and health effects of THS, as well as its behavioral, economic, and sociocultural considerations and consequences. Such a research agenda is necessary to illuminate the role of THS in existing and future tobacco control efforts to decrease smoking initiation and smoking levels, to increase cessation attempts and sustained cessation, and to reduce the cumulative effects of tobacco use on morbidity and mortality

    Research Indoor Air: Results from Unpublished Tobacco Industry Sidestream Cigarette Smoke Increase after Release into 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone in Concentrations of the Carcinogen Citing Articles E-mail alerts Concentrations of the Ca

    No full text
    Abstract Research has shown that the toxicity of sidestream cigarette smoke, the primary constituent of secondhand smoke, increases over time. To find potential mechanisms that would explain the increase in sidestream smoke toxicity over time

    Old ways, new means: tobacco industry funding of academic and private sector scientists since the Master Settlement Agreement

    No full text
    When, as a condition of the Master Settlement Agreement (MSA) in 1998, US tobacco companies disbanded the Council for Tobacco Research and the Center for Indoor Air Research, they lost a vital connection to scientists in academia and the private sector. The aim of this paper was to investigate two new research projects funded by US tobacco companies by analysis of internal tobacco industry documents now available at the University of California San Francisco (San Francisco, California, USA) Legacy tobacco documents library, other websites and the open scientific literature. Since the MSA, individual US tobacco companies have replaced their industry‐wide collaborative granting organisations with new, individual research programmes. Philip Morris has funded a directed research project through the non‐profit Life Sciences Research Office, and British American Tobacco and its US subsidiary Brown and Williamson have funded the non‐profit Institute for Science and Health. Both of these organisations have downplayed or concealed their true level of involvement with the tobacco industry. Both organisations have key members with significant and long‐standing financial relationships with the tobacco industry. Regulatory officials and policy makers need to be aware that the studies these groups publish may not be as independent as they seem

    Thirdhand cigarette smoke: factors affecting exposure and remediation.

    No full text
    Thirdhand smoke (THS) refers to components of secondhand smoke that stick to indoor surfaces and persist in the environment. Little is known about exposure levels and possible remediation measures to reduce potential exposure in contaminated areas. This study deals with the effect of aging on THS components and evaluates possible exposure levels and remediation measures. We investigated the concentration of nicotine, five nicotine related alkaloids, and three tobacco specific nitrosamines (TSNAs) in smoke exposed fabrics. Two different extraction methods were used. Cotton terry cloth and polyester fleece were exposed to smoke in controlled laboratory conditions and aged before extraction. Liquid chromatography-tandem mass spectrometry was used for chemical analysis. Fabrics aged for 19 months after smoke exposure retained significant amounts of THS chemicals. During aqueous extraction, cotton cloth released about 41 times as much nicotine and about 78 times the amount of tobacco specific nitrosamines (TSNAs) as polyester after one hour of aqueous extraction. Concentrations of nicotine and TSNAs in extracts of terry cloth exposed to smoke were used to estimate infant/toddler oral exposure and adult dermal exposure to THS. Nicotine exposure from THS residue can be 6.8 times higher in toddlers and 24 times higher in adults and TSNA exposure can be 16 times higher in toddlers and 56 times higher in adults than what would be inhaled by a passive smoker. In addition to providing exposure estimates, our data could be useful in developing remediation strategies and in framing public health policies for indoor environments with THS
    • 

    corecore