4 research outputs found
Forest Stand Structure and Primary Production in relation to Ecosystem Development, Disturbance, and Canopy Composition
Temperate forests are complex ecosystems that sequester carbon (C) in biomass. C storage is related to ecosystem-scale forest structure, changing over succession, disturbance, and with community composition. We quantified ecosystem biological and physical structure in two forest chronosequences varying in disturbance intensity, and three late successional functional types to examine how multiple structural expressions relate to ecosystem C cycling. We quantified C cycling as wood net primary production (NPP), ecosystem structure as Simpsonâs Index, and physical structure as leaf quantity (LAI) and arrangement (rugosity), examining how wood NPP-structure relates to light distribution and use-efficiency. Relationships between structural attributes of biodiversity, LAI, and rugosity differed. Development of rugosity was conserved regardless of disturbance and composition, suggesting optimization of vegetation arrangement over succession. LAI and rugosity showed significant positive productivity trends over succession, particularly within deciduous broadleaf forests, suggesting these measures of structure contain complementary, not redundant, information related to C cycling
Defining a spectrum of integrative traitâ based vegetation canopy structural types
Vegetation canopy structure is a fundamental characteristic of terrestrial ecosystems that defines vegetation types and drives ecosystem functioning. We use the multivariate structural trait composition of vegetation canopies to classify ecosystems within a global canopy structure spectrum. Across the temperate forest subâ set of this spectrum, we assess gradients in canopy structural traits, characterise canopy structural types (CST) and evaluate drivers and functional consequences of canopy structural variation. We derive CSTs from multivariate canopy structure data, illustrating variation along three primary structural axes and resolution into six largely distinct and functionally relevant CSTs. Our results illustrate that withinâ ecosystem successional processes and disturbance legacies can produce variation in canopy structure similar to that associated with subâ continental variation in forest types and ecoâ climatic zones. The potential to classify ecosystems into CSTs based on suites of structural traits represents an important advance in understanding and modelling structureâ function relationships in vegetated ecosystems.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152994/1/ele13388_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152994/2/ele13388.pd
Recommended from our members
Chromosome Yâencoded antigens associate with acute graft-versus-host disease in sex-mismatched stem cell transplant
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a curative option for blood cancers, but the coupled effects of graft-versus-tumor and graft-versus-host disease (GVHD) limit its broader application. Outcomes improve with matching at HLAs, but other factors are required to explain residual risk of GVHD. In an effort to identify genetic associations outside the major histocompatibility complex, we conducted a genome-wide clinical outcomes study on 205 acute myeloid leukemia patients and their fully HLA-A-, HLA-B-, HLA-C-, HLA-DRB1-, and HLA-DQB1-matched (10/10) unrelated donors. HLA-DPB1 T-cell epitope permissibility mismatches were observed in less than half (45%) of acute GVHD cases, motivating a broader search for genetic factors affecting clinical outcomes. A novel bioinformatics workflow adapted from neoantigen discovery found no associations between acute GVHD and known, HLA-restricted minor histocompatibility antigens (MiHAs). These results were confirmed with microarray data from an additional 988 samples. On the other hand, Y-chromosome-encoded single-nucleotide polymorphisms in 4 genes (PCDH11Y, USP9Y, UTY, and NLGN4Y) did associate with acute GVHD in male patients with female donors. Males in this category with acute GVHD had more Y-encoded variant peptides per patient with higher predicted HLA-binding affinity than males without GVHD who matched X-paralogous alleles in their female donors. Methods and results described here have an immediate impact for allo-HCT, warranting further development and larger genomic studies where MiHAs are clinically relevant, including cancer immunotherapy, solid organ transplant, and pregnancy
Defining a spectrum of integrative traitâbased vegetation canopy structural types
Vegetation canopy structure is a fundamental characteristic of terrestrial ecosystems that defines vegetation types and drives ecosystem functioning. We use the multivariate structural trait composition of vegetation canopies to classify ecosystems within a global canopy structure spectrum. Across the temperate forest subâ set of this spectrum, we assess gradients in canopy structural traits, characterise canopy structural types (CST) and evaluate drivers and functional consequences of canopy structural variation. We derive CSTs from multivariate canopy structure data, illustrating variation along three primary structural axes and resolution into six largely distinct and functionally relevant CSTs. Our results illustrate that withinâ ecosystem successional processes and disturbance legacies can produce variation in canopy structure similar to that associated with subâ continental variation in forest types and ecoâ climatic zones. The potential to classify ecosystems into CSTs based on suites of structural traits represents an important advance in understanding and modelling structureâ function relationships in vegetated ecosystems.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152994/1/ele13388_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152994/2/ele13388.pd