154 research outputs found

    Extreme values and fat tails of multifractal fluctuations

    Full text link
    In this paper we discuss the problem of the estimation of extreme event occurrence probability for data drawn from some multifractal process. We also study the heavy (power-law) tail behavior of probability density function associated with such data. We show that because of strong correlations, standard extreme value approach is not valid and classical tail exponent estimators should be interpreted cautiously. Extreme statistics associated with multifractal random processes turn out to be characterized by non self-averaging properties. Our considerations rely upon some analogy between random multiplicative cascades and the physics of disordered systems and also on recent mathematical results about the so-called multifractal formalism. Applied to financial time series, our findings allow us to propose an unified framemork that accounts for the observed multiscaling properties of return fluctuations, the volatility clustering phenomenon and the observed ``inverse cubic law'' of the return pdf tails

    Joint Probability Distributions for a Class of Non-Markovian Processes

    Full text link
    We consider joint probability distributions for the class of coupled Langevin equations introduced by Fogedby [H.C. Fogedby, Phys. Rev. E 50, 1657 (1994)]. We generalize well-known results for the single time probability distributions to the case of N-time joint probability distributions. It is shown that these probability distribution functions can be obtained by an integral transform from distributions of a Markovian process. The integral kernel obeys a partial differential equation with fractional time derivatives reflecting the non-Markovian character of the process.Comment: 13 pages, 1 figur

    Components of multifractality in the Central England Temperature anomaly series

    Full text link
    We study the multifractal nature of the Central England Temperature (CET) anomaly, a time series that spans more than 200 years. The series is analyzed as a complete data set and considering a sliding window of 11 years. In both cases, we quantify the broadness of the multifractal spectrum as well as its components defined by the deviations from the Gaussian distribution and the influence of the dependence between measurements. The results show that the chief contribution to the multifractal structure comes from the dynamical dependencies, mainly the weak ones, followed by a residual contribution of the deviations from Gaussianity. However, using the sliding window, we verify that the spikes in the non-Gaussian contribution occur at very close dates associated with climate changes determined in previous works by component analysis methods. Moreover, the strong non-Gaussian contribution found in the multifractal measures from the 1960s onwards is in agreement with global results very recently proposed in the literature.Comment: 21 pages, 10 figure

    Nonconcave entropies in multifractals and the thermodynamic formalism

    Full text link
    We discuss a subtlety involved in the calculation of multifractal spectra when these are expressed as Legendre-Fenchel transforms of functions analogous to free energy functions. We show that the Legendre-Fenchel transform of a free energy function yields the correct multifractal spectrum only when the latter is wholly concave. If the spectrum has no definite concavity, then the transform yields the concave envelope of the spectrum rather than the spectrum itself. Some mathematical and physical examples are given to illustrate this result, which lies at the root of the nonequivalence of the microcanonical and canonical ensembles. On a more positive note, we also show that the impossibility of expressing nonconcave multifractal spectra through Legendre-Fenchel transforms of free energies can be circumvented with the help of a generalized free energy function, which relates to a recently introduced generalized canonical ensemble. Analogies with the calculation of rate functions in large deviation theory are finally discussed.Comment: 9 pages, revtex4, 3 figures. Changes in v2: sections added on applications plus many new references; contains an addendum not contained in published versio

    Universality of rain event size distributions

    Full text link
    We compare rain event size distributions derived from measurements in climatically different regions, which we find to be well approximated by power laws of similar exponents over broad ranges. Differences can be seen in the large-scale cutoffs of the distributions. Event duration distributions suggest that the scale-free aspects are related to the absence of characteristic scales in the meteorological mesoscale.Comment: 16 pages, 10 figure

    Geometrical exponents of contour loops on synthetic multifractal rough surfaces: multiplicative hierarchical cascade p-model

    Full text link
    In this paper, we study many geometrical properties of contour loops to characterize the morphology of synthetic multifractal rough surfaces, which are generated by multiplicative hierarchical cascading processes. To this end, two different classes of multifractal rough surfaces are numerically simulated. As the first group, singular measure multifractal rough surfaces are generated by using the pp model. The smoothened multifractal rough surface then is simulated by convolving the first group with a so-called Hurst exponent, HH^* . The generalized multifractal dimension of isoheight lines (contours), D(q)D(q), correlation exponent of contours, xlx_l, cumulative distributions of areas, ξ\xi, and perimeters, η\eta, are calculated for both synthetic multifractal rough surfaces. Our results show that for both mentioned classes, hyperscaling relations for contour loops are the same as that of monofractal systems. In contrast to singular measure multifractal rough surfaces, HH^* plays a leading role in smoothened multifractal rough surfaces. All computed geometrical exponents for the first class depend not only on its Hurst exponent but also on the set of pp values. But in spite of multifractal nature of smoothened surfaces (second class), the corresponding geometrical exponents are controlled by HH^*, the same as what happens for monofractal rough surfaces.Comment: 14 pages, 14 figures and 6 tables; V2: Added comments, references, table and major correction

    Finite size scaling in the solar wind magnetic field energy density as seen by WIND

    Get PDF
    Statistical properties of the interplanetary magnetic field fluctuations can provide an important insight into the solar wind turbulent cascade. Recently, analysis of the Probability Density Functions (PDF) of the velocity and magnetic field fluctuations has shown that these exhibit non-Gaussian properties on small time scales while large scale features appear to be uncorrelated. Here we apply the finite size scaling technique to explore the scaling of the magnetic field energy density fluctuations as seen by WIND. We find a single scaling sufficient to collapse the curves over the entire investigated range. The rescaled PDF follow a non Gaussian distribution with asymptotic behavior well described by the Gamma distribution arising from a finite range Lévy walk. Such mono scaling suggests that a Fokker-Planck approach can be applied to study the PDF dynamics. These results strongly suggest the existence of a common, nonlinear process on the time scale up to 26 hours

    Counting function fluctuations and extreme value threshold in multifractal patterns: the case study of an ideal 1/f1/f noise

    Full text link
    To understand the sample-to-sample fluctuations in disorder-generated multifractal patterns we investigate analytically as well as numerically the statistics of high values of the simplest model - the ideal periodic 1/f1/f Gaussian noise. By employing the thermodynamic formalism we predict the characteristic scale and the precise scaling form of the distribution of number of points above a given level. We demonstrate that the powerlaw forward tail of the probability density, with exponent controlled by the level, results in an important difference between the mean and the typical values of the counting function. This can be further used to determine the typical threshold xmx_m of extreme values in the pattern which turns out to be given by xm(typ)=2clnlnM/lnMx_m^{(typ)}=2-c\ln{\ln{M}}/\ln{M} with c=3/2c=3/2. Such observation provides a rather compelling explanation of the mechanism behind universality of cc. Revealed mechanisms are conjectured to retain their qualitative validity for a broad class of disorder-generated multifractal fields. In particular, we predict that the typical value of the maximum pmaxp_{max} of intensity is to be given by lnpmax=αlnM+32f(α)lnlnM+O(1)-\ln{p_{max}} = \alpha_{-}\ln{M} + \frac{3}{2f'(\alpha_{-})}\ln{\ln{M}} + O(1), where f(α)f(\alpha) is the corresponding singularity spectrum vanishing at α=α>0\alpha=\alpha_{-}>0. For the 1/f1/f noise we also derive exact as well as well-controlled approximate formulas for the mean and the variance of the counting function without recourse to the thermodynamic formalism.Comment: 28 pages; 7 figures, published version with a few misprints corrected, editing done and references adde

    A Cell-Based Model for Quorum Sensing in Heterogeneous Bacterial Colonies

    Get PDF
    Although bacteria are unicellular organisms, they have the ability to act in concert by synthesizing and detecting small diffusing autoinducer molecules. The phenomenon, known as quorum sensing, has mainly been proposed to serve as a means for cell-density measurement. Here, we use a cell-based model of growing bacterial microcolonies to investigate a quorum-sensing mechanism at a single cell level. We show that the model indeed predicts a density-dependent behavior, highly dependent on local cell-clustering and the geometry of the space where the colony is evolving. We analyze the molecular network with two positive feedback loops to find the multistability regions and show how the quorum-sensing mechanism depends on different model parameters. Specifically, we show that the switching capability of the network leads to more constraints on parameters in a natural environment where the bacteria themselves produce autoinducer than compared to situations where autoinducer is introduced externally. The cell-based model also allows us to investigate mixed populations, where non-producing cheater cells are shown to have a fitness advantage, but still cannot completely outcompete producer cells. Simulations, therefore, are able to predict the relative fitness of cheater cells from experiments and can also display and account for the paradoxical phenomenon seen in experiments; even though the cheater cells have a fitness advantage in each of the investigated groups, the overall effect is an increase in the fraction of producer cells. The cell-based type of model presented here together with high-resolution experiments will play an integral role in a more explicit and precise comparison of models and experiments, addressing quorum sensing at a cellular resolution

    Adjuvant electrochemotherapy in veterinary patients: a model for the planning of future therapies in humans

    Get PDF
    The treatment of soft tissue tumors needs the coordinated adoption of surgery with radiation therapy and eventually, chemotherapy. The radiation therapy (delivered with a linear accelerator) can be preoperative, intraoperative, or postoperative. In selected patients adjuvant brachytherapy can be adopted. The goal of these associations is to achieve tumor control while maximally preserving the normal tissues from side effects. Unfortunately, the occurrence of local and distant complications is still elevated. Electrochemotherapy is a novel technique that combines the administration of anticancer agents to the application of permeabilizing pulses in order to increase the uptake of antitumor molecules. While its use in humans is still confined to the treatment of cutaneous neoplasms or the palliation of skin tumor metastases, in veterinary oncology this approach is rapidly becoming a primary treatment. This review summarizes the recent progresses in preclinical oncology and their possible transfer to humans
    corecore