7,308 research outputs found

    Hybrid-aligned nematic liquid-crystal modulators fabricated on VLSI circuits

    Get PDF
    A new method for fabricating analog light modulators on VLSI devices is described. The process is fully compatible with devices fabricated by commercial VLSI foundries, and the assembly of the modulator structures requires a small number of simple processing steps. The modulators are capable of analog amplitude or phase modulation and can operate at video rates and at low voltages (2.2 V). The modulation mechanism and the process yielding the modulator structures are described. Experimental data are presented

    Ultranarrow conducting channels defined in GaAs-AlGaAs by low-energy ion damage

    Get PDF
    We have laterally patterned the narrowest conducting wires of two-dimensional electron gas (2DEG) material reported to date. The depletion induced by low-energy ion etching of GaAs-AlGaAs 2DEG structures was used to define narrow conducting channels. We employed high voltage electron beam lithography to create a range of channel geometries with widths as small as 75 nm. Using ion beam assisted etching by Cl2 gas and Ar ions with energies as low as 150 eV, conducting channels were defined by etching only through the thin GaAs cap layer. This slight etching is sufficient to entirely deplete the underlying material without necessitating exposure of the sidewalls that results in long lateral depletion lengths. At 4.2 K, without illumination, our narrowest wires retain a carrier density and mobility at least as high as that of the bulk 2DEG and exhibit quantized Hall effects. Aharonov–Bohm oscillations are seen in rings defined by this controlled etch-damage patterning. This patterning technique holds promise for creating one-dimensional conducting wires of even smaller sizes

    Surface normal photonic crystal waveguide coupling for N^3 distributed optoelectronic crossbar

    Get PDF
    The realization of the N^3 distributed optoelectronic crossbar requires the incorporation of bidirectional transceiver modules. The current design philosophy of these modules in their single wavelength configuration consist of the integration of VCSEL and RCE detection devices monolithically integrated with a bidirectional common waveguide. Coupling into this common waveguide is currently under investigation utilizing two methods 1.) surface normal coupling using a buried grating coupler external but monolithic surface normal coupling utilizing photonic crystal. This paper will briefly discuss the first method and its drawbacks which motivate the second photonic crystal implementation method. Our initial design work has been accomplished at 980 nm. The measure reflectance spectrum of the VCSEL/PD epitaxy structure prior to the fabrication of the photonic crystal coupler and waveguide layer

    Generalized polarizabilities and the spin-averaged amplitude in virtual Compton scattering off the nucleon

    Get PDF
    We discuss the low-energy behavior of the spin-averaged amplitude of virtual Compton scattering (VCS) off a nucleon. Based on gauge invariance, Lorentz invariance and the discrete symmetries, it is shown that to first order in the frequency of the final real photon only two generalized polarizabilities appear. Different low-energy expansion schemes are discussed and put into perspective.Comment: 13 pages, 1 postscript figure, Revtex using eps

    Epitaxial-tau(Mn,Ni)Al/(Al,Ga)As heterostructures: Magnetic and magneto-optic properties

    Get PDF
    Ferromagnetic Perpendicularly magnetized epitaxial thin films of tau (Mn,Ni)AI have been successfully grown on AlAs/GaAs heterostructures by molecular beam epitaxy. We have investigated the polar Kerr rotation and magnetization of tau MnAl and (Mn,Ni) Al as a function of Mn and Ni concentration. The largest polar Kerr rotation and remnant magnetization were obtained for Mn0.5Al0.5 thin films with values of 0.16-degrees and 224 emu/cm3, respectively. We observed that the Kerr rotation and magnetization remained constant with Ni additions up to about 12 at. % and subsequently decreased with further Ni additions. We discuss these results and one possible method of enhancing the Kerr rotation

    The extraordinary Hall effect in coherent epitaxial tau (Mn,Ni)Al thin films on GaAs

    Get PDF
    Ultrathin coherent epitaxial films of ferromagnetic tau(Mn,Ni)0.60Al0.40 have been grown by molecular beam epitaxy on GaAs substrates. X-ray scattering and cross-sectional transmission electron microscopy measurements confirm that the c axis of the tetragonal tau unit cell is aligned normal to the (001) GaAs substrate. Measurements of the extraordinary Hall effect (EHE) show that the films are perpendicularly magnetized, exhibiting EHE resistivities saturating in the range of 3.3-7.1 muOMEGA-cm at room temperature. These values of EHE resistivity correspond to signals as large as +7 and -7 mV for the two magnetic states of the film with a measurement current of 1 mA. Switching between the two magnetic states is found to occur at distinct field values that depend on the previously applied maximum field. These observations suggest that the films are magnetically uniform. As such, tau(Mn,Ni)Al films may be an excellent medium for high-density storage of binary information

    Non-Volatile Memory Characteristics of Submicrometre Hall Structures Fabricated in Epitaxial Ferromagnetic MnAl Films on GaAs

    Get PDF
    Hall-effect structures with submicrometre linewidths (<0.3pm) have been fabricated in ferromagnetic thin films of Mn[sub 0.60]Al[sub 0.40] which are epitaxially grown on a GaAs substrate. The MnAl thin films exhibit a perpendicular remanent magnetisation and an extraordinary Hall effect with square hysteretic behaviour. The presence of two distinct stable readout states demonstrates the potential of using ultrasmall ferromagnetic volumes for electrically addressable, nonvolatile storage of digital information

    Thermoelectric properties of Zn_5Sb_4In_(2-δ)(δ=0.15)

    Get PDF
    The polymorphic intermetallic compound Zn_5Sb_4In_(2−δ) (δ = 0.15(3)) shows promising thermoelectric properties at low temperatures, approaching a figure of merit ZT of 0.3 at 300 K. However, thermopower and electrical resistivity changes discontinuously at around 220 K. Measurement of the specific heat locates the previously unknown temperature of the order-disorder phase transition at around 180 K. Investigation of the charge carrier concentration and mobility by Hall measurements and infrared reflection spectroscopy indicate a mixed conduction behavior and the activation of charge carriers at temperatures above 220 K. Zn_5Sb_4In_(2−δ) has a low thermal stability, and at temperatures above 470 K samples decompose into a mixture of Zn, InSb, and Zn_4Sb_3
    • …
    corecore