1,343 research outputs found

    Wafer-bonded single-crystal silicon slot waveguides and ring resonators

    Get PDF
    We fabricated horizontal Si slot waveguides with a 25 nm SiO2 slot layer by bonding thin Si-on-insulator wafers. After removing the Si substrate and buried oxide from one side of the bonded structure, grating-coupled waveguides and ring resonators were partially etched into the Si/SiO2/Si device layers. The gratings exhibit efficiencies of up to 23% at 1550 nm and the ring resonators were measured to have loaded quality factors near 42 000 for the lowest-order transverse-electric mode, corresponding to a propagation loss of 15 dB/cm. The leaky lowest-order transverse-magnetic mode was also observed with a propagation loss of 44 dB/cm

    Production of heralded pure single photons from imperfect sources using cross phase modulation

    Full text link
    Realistic single-photon sources do not generate single photons with certainty. Instead they produce statistical mixtures of photons in Fock states ∣1⟩\ket{1} and vacuum (noise). We describe how to eliminate the noise in the output of the sources by means of another noisy source or a coherent state and cross phase modulation (XPM). We present a scheme which announces the production of pure single photons and thus eliminates the vacuum contribution. This is done by verifying a XPM related phase shift with a Mach-Zehnder interferometer.Comment: 8 pages, 8 EPS figures, RevTeX4. Following changes have been made in v.3: Title and abstract slightly changed; numerous minor revisions and clarifications within the text; an appendix with three new figures has been added. In version v4 we have included a supplementary analysis of our scheme that takes into account absorption losses. Our analysis is heuristic and based on a phenomenological model, which is independent of the physical realization of the proposed scheme. We have estimated upper bounds up to which absorption losses can be tolerated, so as our scheme to improve the efficiency of single photon sources still works. Accepted for publication in Phys. Rev.

    Deviations from Linear Theory for Fluctuations below the Supercritical Primary Bifurcation to Electroconvection

    Get PDF
    We report measurements of thermally-induced mean-square director-angle fluctuations below primary supercritical bifurcations to electroconvection of the nematic liquid crystals I52 and "Merck Phase V". For epsilon_mf = V^2/V_c,mf^2 - 1 < -0.1 (V is the amplitude of the applied alternating voltage) we find proportional to epsilon_mf^(-gamma) with gamma given by linear theory (LT). Closer to the bifurcation there are deviations from LT with a smaller gamma and with V_c^2 > V_c,mf^2. For I52 measurements as a function of the conductivity sigma of above V_c^2 suggest a tricritical bifurcation at sigma_t = 4.0 x 10^(-9) Omega^(-1)m^(-1), and (V_c^2 - V_c,mf^2)/V_c^2 increases strongly as sigma_t is approached from above.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Finite-Temperature Fidelity-Metric Approach to the Lipkin-Meshkov-Glick Model

    Full text link
    The fidelity metric has recently been proposed as a useful and elegant approach to identify and characterize both quantum and classical phase transitions. We study this metric on the manifold of thermal states for the Lipkin-Meshkov-Glick (LMG) model. For the isotropic LMG model, we find that the metric reduces to a Fisher-Rao metric, reflecting an underlying classical probability distribution. Furthermore, this metric can be expressed in terms of derivatives of the free energy, indicating a relation to Ruppeiner geometry. This allows us to obtain exact expressions for the (suitably rescaled) metric in the thermodynamic limit. The phase transition of the isotropic LMG model is signalled by a degeneracy of this (improper) metric in the paramagnetic phase. Due to the integrability of the isotropic LMG model, ground state level crossings occur, leading to an ill-defined fidelity metric at zero temperature.Comment: 18 pages, 3 figure

    Design and fabrication of chemically robust three-dimensional microfluidic valves

    Get PDF
    A current problem in microfluidics is that poly(dimethylsiloxane) (PDMS), used to fabricate many microfluidic devices, is not compatible with most organic solvents. Fluorinated compounds are more chemically robust than PDMS but, historically, it has been nearly impossible to construct valves out of them by multilayer soft lithography (MSL) due to the difficulty of bonding layers made of non-stick fluoropolymers necessary to create traditional microfluidic valves. With our new three-dimensional (3D) valve design we can fabricate microfluidic devices from fluorinated compounds in a single monolithic layer that is resistant to most organic solvents with minimal swelling. This paper describes the design and development of 3D microfluidic valves by molding of a perfluoropolyether, termed Sifel, onto printed wax molds. The fabrication of Sifel-based microfluidic devices using this technique has great potential in chemical synthesis and analysis

    Heralded single-photon generation using imperfect single-photon sources and a two-photon-absorbing medium

    Full text link
    We propose a setup for a heralded, i.e. announced generation of a pure single-photon state given two imperfect sources whose outputs are represented by mixtures of the single-photon Fock state ∣1⟩\ket{1} with the vacuum ∣0⟩\ket{0}. Our purification scheme uses beam splitters, photodetection and a two-photon-absorbing medium. The admixture of the vacuum is fully eliminated. We discuss two potential realizations of the scheme.Comment: 22 pages, 8 figures (LaTeX). In version v2 we have slightly modified our setup so as to increase the success probability of single-photon generation by a factor of two. In addition, in an appendix we discuss alternative realizations of single-photon generation without a Mach-Zehnder interferometer. Three new figures have been added. Version v3 is a revised version published in Phys. Rev. A. It contains numerous minor corrections and clarifications. A new figure has been added in order to clarify our convention regarding labelling the field modes. The action of the beam splitters in the Schroedinger picture is introduced. A new reference has been include

    Low field extension for magnetometers (TinyBee) used for investigations on low-dimensional superconductors with Bc1 < 5G

    Full text link
    In this article a simple and easy to install low magnetic field extension of the SQUID magnetometer Quantum Design MPMS-7 is described. This has been accomplished by complementing the MPMS-7 magnet control system with a laboratory current supply for the low magnetic field region (B \leq 200G). This hard- and software upgrade provides a significant gain in the magnetic field accuracy up to an order of magnitude compared with the standard instrument's setup and is improving the resolution to better than 0.01G below 40G. The field control has been integrated into the Quantum Design MultiVu software for a transparent and user-friendly operation of this extension. The improvements achieved are especially useful, when low magnetic field strengths (B < 1G) are required at high precision. The specific advantages of this application are illustrated by sophisticated magnetic characterisation of lowdimensional superconductors like Sc3CoC4 and SnSe2{Co({\eta}-C5H5)2}x.Comment: 16 pages, 7 figure
    • …
    corecore