6 research outputs found

    High-frequency characterization of Permalloy nanosized strips using network analyzer ferromagnetic resonance

    Get PDF
    We report on the dynamic properties of Permalloy nanostrips at gagahertz frequencies. The thickness of the strips is 100 nm, strip width is 300 nm, strip spacing is 1 μm, and length is 0.3–100 μm; aspect ratios are 1:1, 1:2, 1:3, 1:5, 1:10, and 1:333. The dynamic behavior was studied by network analyzer ferromagnetic resonance (FMR) using Permalloy strips on a coplanar waveguide in flip-chip geometry. The FMR mode frequencies (fr) can be controlled by the aspect ratio as well as by the applied magnetic field (H). In longer strips (1:10 and 1:333), the excitation frequencies show a soft mode behavior (Heff = 990 Oe) when the field is along the hard axis. However, along the easy axis (along the strip length), fr increases with applied field. At a field of 3 kOe, fr values are almost independent of aspect ratio along the easy axis except for the 1:1 strip. Along the hard axis, the frequencies are strongly dependent upon the aspect ratio. We also observed that the frequency linewidths of the strips are dependent on the aspect rati

    Microwave absorption of patterned arrays of nanosized magnetic stripes with different aspect ratios

    Get PDF
    Arrays consisting of nanosized stripes of Permalloy with different length-to-width ratios have been fabricated using electron beam nanolithography, magnetron sputtering, and lift-off process. These stripes have a thickness of 100 nm, a width of 300 nm, and different lengths ranging from 300 nm to 100 μm. The stripes are separated by a distance of 1 μm. Magnetization hysteresis loops were measured using a superconducting quantum interference device susceptometer. Microwave absorption at 9.8 GHz was determined by means of ferromagnetic resonance technique. The dependence of the resonant field on the angle between the nanostructure and the in-plane dc magnetic field indicates the presence of uniaxial magnetic anisotropy associated with the aspect ratio of the stripes. A maximum change of the resonant field of 1600 Oe was observed in the longest stripes, yet it was only 200 Oe for square shaped stripes. The linewidth of the resonant curve varied with the angle, in the range from 120 to 300 Oe. Most of the ferromagnetic resonance spectra exhibited multiple resonant peaks due to dimensional confinement of spin waves in the nanosized stripes. The maximum squareness of the magnetization hysteresis loop was for the field applied along the stripes, but the coercivity did not have a monotonic angular dependence as expected from the Stoner-Wohlfarth model for coherent magnetization rotation of the systems with uniaxial anisotropy

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    High-frequency characterization of Permalloy nanosized strips using network analyzer ferromagnetic resonance

    No full text
    We report on the dynamic properties of Permalloy nanostrips at gagahertz frequencies. The thickness of the strips is 100 nm, strip width is 300 nm, strip spacing is 1 μm, and length is 0.3–100 μm; aspect ratios are 1:1, 1:2, 1:3, 1:5, 1:10, and 1:333. The dynamic behavior was studied by network analyzer ferromagnetic resonance (FMR) using Permalloy strips on a coplanar waveguide in flip-chip geometry. The FMR mode frequencies (fr) can be controlled by the aspect ratio as well as by the applied magnetic field (H). In longer strips (1:10 and 1:333), the excitation frequencies show a soft mode behavior (Heff = 990 Oe) when the field is along the hard axis. However, along the easy axis (along the strip length), fr increases with applied field. At a field of 3 kOe, fr values are almost independent of aspect ratio along the easy axis except for the 1:1 strip. Along the hard axis, the frequencies are strongly dependent upon the aspect ratio. We also observed that the frequency linewidths of the strips are dependent on the aspect rati

    Microwave absorption of patterned arrays of nanosized magnetic stripes with different aspect ratios

    No full text
    Arrays consisting of nanosized stripes of Permalloy with different length-to-width ratios have been fabricated using electron beam nanolithography, magnetron sputtering, and lift-off process. These stripes have a thickness of 100 nm, a width of 300 nm, and different lengths ranging from 300 nm to 100 μm. The stripes are separated by a distance of 1 μm. Magnetization hysteresis loops were measured using a superconducting quantum interference device susceptometer. Microwave absorption at 9.8 GHz was determined by means of ferromagnetic resonance technique. The dependence of the resonant field on the angle between the nanostructure and the in-plane dc magnetic field indicates the presence of uniaxial magnetic anisotropy associated with the aspect ratio of the stripes. A maximum change of the resonant field of 1600 Oe was observed in the longest stripes, yet it was only 200 Oe for square shaped stripes. The linewidth of the resonant curve varied with the angle, in the range from 120 to 300 Oe. Most of the ferromagnetic resonance spectra exhibited multiple resonant peaks due to dimensional confinement of spin waves in the nanosized stripes. The maximum squareness of the magnetization hysteresis loop was for the field applied along the stripes, but the coercivity did not have a monotonic angular dependence as expected from the Stoner-Wohlfarth model for coherent magnetization rotation of the systems with uniaxial anisotropy

    Sodium selectivity of semicircular canal duct epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sodium absorption by semicircular canal duct (SCCD) epithelial cells is thought to contribute to the homeostasis of the volume of vestibular endolymph. It was previously shown that the epithelial cells could absorb Na<sup>+ </sup>under control of a glucocorticoid hormone (dexamethasone) and the absorptive transepithelial current was blocked by amiloride. The most commonly-observed target of amiloride is the epithelial sodium channel (ENaC), comprised of the three subunits α-, β- and γ-ENaC. However, other cation channels have also been observed to be sensitive in a similar concentration range. The aim of this study was to determine whether SCCD epithelial cells absorb only Na<sup>+ </sup>or also K<sup>+ </sup>through an amiloride-sensitive pathway. Parasensory K<sup>+ </sup>absorption could contribute to regulation of the transduction current through hair cells, as found to occur via vestibular transitional cells [S. H. Kim and D. C. Marcus. Regulation of sodium transport in the inner ear. <it>Hear.Res</it>. doi:10.1016/j.heares.2011.05.003, 2011].</p> <p>Results</p> <p>We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6197), whole-cell patch clamp and transepithelial recordings in primary cultures of rat SCCD. α-, β- and γ-ENaC were all previously reported as present. The selectivity of the amiloride-sensitive transepithelial and cell membrane currents was observed in Ussing chamber and whole-cell patch clamp recordings. The cell membrane currents were carried by Na<sup>+ </sup>but not K<sup>+</sup>, but the Na<sup>+ </sup>selectivity disappeared when the cells were cultured on impermeable supports. Transepithelial currents across SCCD were also carried exclusively by Na<sup>+</sup>.</p> <p>Conclusions</p> <p>These results are consistent with the amiloride-sensitive absorptive flux of SCCD mediated by a highly Na<sup>+</sup>-selective channel, likely αβγ-ENaC. These epithelial cells therefore absorb only Na<sup>+ </sup>via the amiloride-sensitive pathway and do not provide a parasensory K<sup>+ </sup>efflux from the canals via this pathway. The results further provide caution to the culture of epithelial cells on impermeable surfaces.</p
    corecore