242 research outputs found
Effect of Iron Nanopowder on Flammability of Epoxy Composites
Reducing the flammability of polymeric materials is a serious problem that needs to be solved. The paper presents the results of a study of the effect of iron nanopowders, used as filler, on the flammability of epoxy polymers. Epoxy composites filled with 5 wt. % of iron nanopowder and 10 wt. % of boric acid separately, as well as in combination were prepared. The flammability of the prepared samples was evaluated by determining the ignition temperature and time-to-ignition
Flat-Field Super-Resolution Localization Microscopy with a Low-Cost Refractive Beam-Shaping Element.
Super-resolution single-molecule localization microscopy, often referred to as PALM/STORM, works by ensuring that fewer than one fluorophore in a diffraction-limited volume is emitting at any one time, allowing the observer to infer that the emitter is located at the center of the point-spread function. This requires careful control over the incident light intensity in order to control the rate at which fluorophores are switched on; if too many fluorophores are activated, their point-spread functions overlap, which impedes efficient localization. If too few are activated, the imaging time is impractically long. There is therefore considerable recent interest in constructing so-called 'top-hat' illumination profiles that provide a uniform illumination over the whole field of view. We present the use of a single commercially-available low-cost refractive beamshaping element that can be retrofitted to almost any existing microscope; the illumination profile created by this element demonstrates a marked improvement in the power efficiency of dSTORM microscopy, as well as a significant reduction in the propensity for reconstruction artifacts, compared to conventional Gaussian illumination
Recommended from our members
A fluorescent reporter system enables spatiotemporal analysis of host cell modification during herpes simplex virus-1 replication.
Herpesviruses are large and complex viruses that have a long history of coevolution with their host species. One important factor in the virus-host interaction is the alteration of intracellular morphology during viral replication with critical implications for viral assembly. However, the details of this remodeling event are not well understood, in part because insufficient tools are available to deconstruct this highly heterogeneous process. To provide an accurate and reliable method of investigating the spatiotemporal dynamics of virus-induced changes to cellular architecture, we constructed a dual-fluorescent reporter virus that enabled us to classify four distinct stages in the infection cycle of herpes simplex virus-1 at the single cell level. This timestamping method can accurately track the infection cycle across a wide range of multiplicities of infection. We used high-resolution fluorescence microscopy analysis of cellular structures in live and fixed cells in concert with our reporter virus to generate a detailed and chronological overview of the spatial and temporal reorganization during viral replication. The highly orchestrated and striking relocation of many organelles around the compartments of secondary envelopment during transition from early to late gene expression suggests that the reshaping of these compartments is essential for virus assembly. We furthermore find that accumulation of HSV-1 capsids in the cytoplasm is accompanied by fragmentation of the Golgi apparatus with potential impact on the late steps of viral assembly. We anticipate that in the future similar tools can be systematically applied for the systems-level analysis of intracellular morphology during replication of other viruses
Microstrain and electrochemical performance of garnet solid electrolyte integrated in a hybrid battery cell
Garnet type solid electrolytes are promising candidates for replacing the flammable liquid electrolytes conventionally used in Li-ion batteries. Al-doped Li7La3Zr2O12 (LLZO) is synthesized using nebulized spray pyrolysis and field assisted sintering technology (FAST), a novel synthesis route ensuring the preparation of samples with a homogeneous elemental distribution and dense ceramic electrolytes. Ceramic preparation utilizing field assisted sintering, in particular the applied pressure, has significant influence on the material structure, i.e. microstrain, and thereby its electrochemical performance. The phenomenon of microstrain enhancement of electrochemical performance might open a new route towards improved garnet solid electrolytes. A detailed mechanism is proposed for the lattice distortion and resulting microstrain during sintering. The charge transfer resistance of Li-ions at the interface between LLZO and Li is characterized using AC impedance spectroscopy and is amongst the best reported values to date. Additionally, the solid electrolyte is integrated in a full hybrid cell, a practical approach combining all the advantages of the solid electrolyte, while maintaining good contact with the cathode material
The Hybrid BCI
Nowadays, everybody knows what a hybrid car is. A hybrid car normally has two engines to enhance energy efficiency and reduce CO2 output. Similarly, a hybrid brain-computer interface (BCI) is composed of two BCIs, or at least one BCI and another system. A hybrid BCI, like any BCI, must fulfill the following four criteria: (i) the device must rely on signals recorded directly from the brain; (ii) there must be at least one recordable brain signal that the user can intentionally modulate to effect goal-directed behaviour; (iii) real time processing; and (iv) the user must obtain feedback. This paper introduces hybrid BCIs that have already been published or are in development. We also introduce concepts for future work. We describe BCIs that classify two EEG patterns: one is the event-related (de)synchronisation (ERD, ERS) of sensorimotor rhythms, and the other is the steady-state visual evoked potential (SSVEP). Hybrid BCIs can either process their inputs simultaneously, or operate two systems sequentially, where the first system can act as a “brain switch”. For example, we describe a hybrid BCI that simultaneously combines ERD and SSVEP BCIs. We also describe a sequential hybrid BCI, in which subjects could use a brain switch to control an SSVEP-based hand orthosis. Subjects who used this hybrid BCI exhibited about half the false positives encountered while using the SSVEP BCI alone. A brain switch can also rely on hemodynamic changes measured through near-infrared spectroscopy (NIRS). Hybrid BCIs can also use one brain signal and a different type of input. This additional input can be an electrophysiological signal such as the heart rate, or a signal from an external device such as an eye tracking system
Mid-Term Outcome after Extracorporeal Life Support in Postcardiotomy Cardiogenic Shock: Recovery and Quality of Life
Background: Extracorporeal life support (ECLS) therapy for refractory postcardiotomy cardiogenic shock (rPCS) is associated with high early mortality rates. This study aimed to identify negative predictors of mid-term survival and to assess health-related quality of life (HRQoL) and recovery of the survivors. Methods: Between 2017 and 2020, 142 consecutive patients received ECLS therapy following cardiac surgery. The median age was 66.0 [57.0–73.0] years, 67.6% were male and the median EuroSCORE II was 10.5% [4.2–21.3]. In 48 patients, HRQoL was examined using the 36-Item Short Form Survey (SF-36) and the modified Rankin-Scale (mRS) at a median follow-up time of 2.2 [1.9–3.2] years. Results: Estimated survival rates at 3, 12, 24 and 36 months were 47%, 46%, 43% and 43% (SE: 4%). Multivariable Cox Proportional Hazard regression analysis revealed preoperative EuroSCORE II (p = 0.013), impaired renal function (p = 0.010), cardiopulmonary bypass duration (p = 0.015) and pre-ECLS lactate levels (p = 0.004) as independent predictors of mid-term mortality. At the time of follow-up, 83.3% of the survivors were free of moderate to severe disability (mRS \u3c 3). SF-36 analysis showed a physical component summary of 45.5 ± 10.2 and a mental component summary of 50.6 ± 12.5. Conclusions: Considering the disease to be treated, ECLS for rPCS is associated with acceptable mid-term survival, health-related quality of life and functional status. Preoperative EuroSCORE II, impaired renal function, cardiopulmonary bypass duration and lactate levels prior to ECLS implantation were identified as negative predictors and should be included in the decision-making process
- …