12,136 research outputs found
Fabrication of photonic band-gap crystals
We describe the fabrication of three-dimensional photonic crystals using a reproducible and reliable procedure consisting of electron beam lithography followed by a sequence of dry etching steps. Careful fabrication has enabled us to define photonic crystals with 280 nm holes defined with 350 nm center to center spacings in GaAsP and GaAs epilayers. We construct these photonic crystals by transferring a submicron pattern of holes from 70-nm-thick polymethylmethacrylate resist layers into 300-nm-thick silicon dioxide ion etch masks, and then anisotropically angle etching the III-V semiconductor material using this mask. Here, we show the procedure used to generate photonic crystals with up to four lattice periods depth
Electromagnetic form factors of the nucleon in effective field theory
We calculate the electromagnetic form factors of the nucleon to third chiral
order in manifestly Lorentz-invariant effective field theory. The rho and omega
mesons as well as the Delta(1232) resonance are included as explicit dynamical
degrees of freedom. To obtain a self-consistent theory with respect to
constraints we consider the proper relations among the couplings of the
effective Lagrangian. For the purpose of generating a systematic power
counting, the extended on-mass-shell renormalization scheme is applied in
combination with the small-scale expansion. The results for the electric and
magnetic Sachs form factors are analyzed in terms of experimental data and
compared to previous findings in the framework of chiral perturbation theory.
The pion-mass dependence of the form factors is briefly discussed.Comment: 26 pages, 9 figure
Possible indicators for low dimensional superconductivity in the quasi-1D carbide Sc3CoC4
The transition metal carbide Sc3CoC4 consists of a quasi-one-dimensional (1D)
structure with [CoC4]_{\inft} polyanionic chains embedded in a scandium
matrix. At ambient temperatures Sc3CoC4 displays metallic behavior. At lower
temperatures, however, charge density wave formation has been observed around
143K which is followed by a structural phase transition at 72K. Below T^onset_c
= 4.5K the polycrystalline sample becomes superconductive. From Hc1(0) and
Hc2(0) values we could estimate the London penetration depth ({\lambda}_L ~=
9750 Angstroem) and the Ginsburg-Landau (GL) coherence length ({\xi}_GL ~= 187
Angstroem). The resulting GL-parameter ({\kappa} ~= 52) classifies Sc3CoC4 as a
type II superconductor. Here we compare the puzzling superconducting features
of Sc3CoC4, such as the unusual temperature dependence i) of the specific heat
anomaly and ii) of the upper critical field H_c2(T) at T_c, and iii) the
magnetic hysteresis curve, with various related low dimensional
superconductors: e.g., the quasi-1D superconductor (SN)_x or the 2D
transition-metal dichalcogenides. Our results identify Sc3CoC4 as a new
candidate for a quasi-1D superconductor.Comment: 4 pages, 5 figure
Lithographic band gap tuning in photonic band gap crystals
We describe the lithographic control over the spectral response of three-dimensional photonic crystals. By precise microfabrication of the geometry using a reproducible and reliable procedure consisting of electron beam lithography followed by dry etching, we have shifted the conduction band of crystals within the near-infrared. Such microfabrication has enabled us to reproducibly define photonic crystals with lattice parameters ranging from 650 to 730 nm. In GaAs semiconductor wafers, these can serve as high-reflectivity (> 95%) mirrors. Here, we show the procedure used to generate these photonic crystals and describe the geometry dependence of their spectral response
Lasers incorporating 2D photonic bandgap mirrors
Semiconductor lasers incorporating a 2D photonic lattice as a one end mirror in a Fabry-Perot cavity are demonstrated. The photonic lattice is a 2D hexagonal close-packed array with a lattice constant of 220 nm. Pulsed threshold currents of 110 mA were observed from a 180 μm laser
- …