129 research outputs found

    Tunneling Via Individual Electronic States in Ferromagnetic Nanoparticles

    Full text link
    We measure electron tunneling via discrete energy levels in ferromagnetic cobalt particles less than 4 nm in diameter, using non-magnetic electrodes. Due to magnetic anisotropy, the energy of each tunneling resonance shifts as an applied magnetic field rotates the particle's magnetic moment. We see both spin-increasing and decreasing tunneling transitions, but we do not observe the spin degeneracy at small magnetic fields seen previously in non-magnetic materials. The tunneling spectrum is denser than predicted for independent electrons, possibly due to spin-wave excitations.Comment: 4 pages, 4 figures. Improved by comments from referees, to appear in Phys. Rev. Let

    Missouri 2011 Soft Red Winter Wheat Performance Tests

    Get PDF
    This report is published by the MU Variety Testing Program, Division of Plant Sciences, University of Missouri. The work was supported by fees from companies and organizations submitting varieties for evaluation. The large number of varieties available makes selection of a superior variety difficult. To select intelligently, producers need a reliable, unbiased, up-to-date source of information that will permit valid comparisons among available varieties. The objective of the MU Variety Testing Program is to provide this information. Tests are conducted under as close to uniform conditions as possible. Small plots are used to reduce the chance of soil and other variations occurring among variety plots. Results obtained should aid individual growers in judging the relative merits of many of the commercial wheat varieties available in Missouri

    Missouri 2011 Corn Performance Tests

    Get PDF
    This report is published by the MU Variety Testing Program, Division of Plant Sciences, University of Missouri. The work was supported by fees provided by companies submitting hybrids for evaluation. The University of Missouri's hybrid performance testing program began in the mid-1930s, with results first published in 1937. The number of entries in the program has grown from fewer than 50 in the early years to more than 250 today. The large number of commercial hybrids available makes selection of a superior hybrid difficult. To select intelligently, producers need a reliable, unbiased, up-to-date source of information that will permit valid comparisons among available hybrids. The objective of the MU Variety Testing Program is to provide this information

    High frequency magnetic behavior through the magnetoimpedance effect in CoFeB/(Ta, Ag, Cu) multilayered ferromagnetic thin films

    Full text link
    We studied the dynamics of magnetization through an investigation of the magnetoimpedance effect in CoFeB/(Ta, Ag, Cu) multilayered thin films grown by magnetron sputtering. Impedance measurements were analyzed in terms of the mechanisms responsible for their variations at different frequency intervals and the magnetic and structural properties of the multilayers. Analysis of the mechanisms responsible for magnetoimpedance according to frequency and external magnetic field showed that for the CoFeB/Cu multilayer, ferromagnetic resonance (FMR) contributes significantly to the magnetoimpedance effect at frequencies close to 470 MHz. This frequency is low when compared to the results obtained for CoFeB/Ta and CoFeB/Ag multilayers and is a result of the anisotropy distribution and non-formation of regular bilayers in this sample. The MImax values occurred at different frequencies according to the used non-magnetic metal. Variations between 25% and 30% were seen for a localized frequency band, as in the case of CoFeB/Ta and CoFeB/Ag, as well as for a wide frequency range, in the case of CoFeB/Cu.Comment: 14 pages, 5 figure

    Nonequilibrium spin distribution in single-electron transistor

    Full text link
    Single-electron transistor with ferromagnetic outer electrodes and nonmagnetic island is studied theoretically. Nonequilibrium electron spin distribution in the island is caused by tunneling current. The dependencies of the magnetoresistance ratio ÎŽ\delta on the bias and gate voltages show the dips which are directly related to the induced separation of Fermi levels for electrons with different spins. Inside a dip ÎŽ\delta can become negative.Comment: 11 pages, 2 eps figure

    Mesoscopic Tunneling Magnetoresistance

    Full text link
    We study spin-dependent transport through ferromagnet/normal-metal/ferromagnet double tunnel junctions in the mesoscopic Coulomb blockade regime. A general transport equation allows us to calculate the conductance in the absence or presence of spin-orbit interaction and for arbitrary orientation of the lead magnetizations. The tunneling magnetoresistance (TMR), defined at the Coulomb blockade conductance peaks, is calculated and its probability distribution presented. We show that mesoscopic fluctuations can lead to the optimal value of the TMR.Comment: 5 pages, 3 eps figures included using epsf.sty. Revised text and improved notation, fig. 2 removed, explicit equations for the GSE case adde

    Crossover from Kondo assisted suppression to co-tunneling enhancement of tunneling magnetoresistance via ferromagnetic nanodots in MgO tunnel barriers

    Full text link
    Recently, it has been shown that magnetic tunnel junctions with thin MgO tunnel barriers exhibit extraordinarily high tunneling magnetoresistance (TMR) values at room temperature1, 2. However, the physics of spin dependent tunneling through MgO barriers is only beginning to be unravelled. Using planar magnetic tunnel junctions in which ultra-thin layers of magnetic metals are deposited in the middle of a MgO tunnel barrier here we demonstrate that the TMR is strongly modified when these layers are discontinuous and composed of small pancake shaped nanodots. At low temperatures, in the Coulomb blockade regime, for layers less than ~1 nm thick, the conductance of the junction is increased at low bias consistent with Kondo assisted tunneling. In the same regime we observe a suppression of the TMR. For slightly thicker layers, and correspondingly larger nanodots, the TMR is enhanced at low bias, consistent with co-tunneling.Comment: Nano Letters (in press

    Do nasogastric tubes worsen dysphagia in patients with acute stroke?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early feeding via a nasogastric tube (NGT) is recommended as safe way of supplying nutrition in patients with acute dysphagic stroke. However, preliminary evidence suggests that NGTs themselves may interfere with swallowing physiology. In the present study we therefore investigated the impact of NGTs on swallowing function in acute stroke patients.</p> <p>Methods</p> <p>In the first part of the study the incidence and consequences of pharyngeal misplacement of NGTs were examined in 100 stroke patients by fiberoptic endoscopic evaluation of swallowing (FEES). In the second part, the effect of correctly placed NGTs on swallowing function was evaluated by serially examining 25 individual patients with and without a NGT in place.</p> <p>Results</p> <p>A correctly placed NGT did not cause a worsening of stroke-related dysphagia. Except for two cases, in which swallowing material got stuck to the NGT and penetrated into the laryngeal vestibule after the swallow, no changes of the amount of penetration and aspiration were noted with the NGT in place as compared to the no-tube condition. Pharyngeal misplacement of the NGT was identified in 5 of 100 patients. All these patients showed worsening of dysphagia caused by the malpositioned NGT with an increase of pre-, intra-, and postdeglutitive penetration.</p> <p>Conclusion</p> <p>Based on these findings, there are no principle obstacles to start limited and supervised oral feeding in stroke patients with a NGT in place.</p
    • 

    corecore