12 research outputs found

    Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression

    Get PDF
    Background: Anthropogenic activities cause metal pollution worldwide. Plants can absorb and accumulate these metals through their root system, inducing stress as a result of excess metal concentrations inside the plant. Ethylene is a regulator of multiple plant processes, and is affected by many biotic and abiotic stresses. Increased ethylene levels have been observed after exposure to excess metals but it remains unclear how the increased ethylene levels are achieved at the molecular level. In this study, the effects of cadmium (Cd) exposure on the production of ethylene and its precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and on the expression of the ACC Synthase (ACS) and ACC Oxidase (ACO) multigene families were investigated in Arabidopsis thaliana. Results: Increased ethylene release after Cd exposure was directly measurable in a system using rockwool-cultivated plants; enhanced levels of the ethylene precursor ACC together with higher mRNA levels of ethylene responsive genes: ACO2, ETR2 and ERF1 also indicated increased ethylene production in hydroponic culture. Regarding underlying mechanisms, it was found that the transcript levels of ACO2 and ACO4, the most abundantly expressed members of the ACO multigene family, were increased upon Cd exposure. ACC synthesis is the rate-limiting step in ethylene biosynthesis, and transcript levels of both ACS2 and ACS6 showed the highest increase and became the most abundant isoforms after Cd exposure, suggesting their importance in the Cd-induced increase of ethylene production. Conclusions: Cadmium induced the biosynthesis of ACC and ethylene in Arabidopsis thaliana plants mainly via the increased expression of ACS2 and ACS6. This was confirmed in the acs2-1acs6-1 double knockout mutants, which showed a decreased ethylene production, positively affecting leaf biomass and resulting in a delayed induction of ethylene responsive gene expressions without significant differences in Cd contents between wild-type and mutant plants

    ALTERNATIVE OXIDASE1a modulates the oxidative challenge during moderate Cd exposure in Arabidopsis thaliana leaves

    No full text
    This study aims to unravel the functional significance of alternative oxidase1a (AOX1a) induction in Arabidopsis thaliana leaves exposed to cadmium (Cd) by comparing wild-type (WT) plants and aox1a knockout mutants. In the absence of AOX1a, differences in stress-responsive transcript and glutathione levels suggest an increased oxidative challenge during moderate (5 mu M) and prolonged (72 h) Cd exposure. Nevertheless, aox1a knockout leaves showed lower hydrogen peroxide (H2O2) accumulation as compared to the WT due to both acute (24 h) and prolonged (72 h) exposure to 5 mu M Cd, but not to 10 mu M Cd. Taken together, we propose a working model where AOX1a acts early in the response to Cd and activates or maintains a mitochondrial signalling pathway impacting on cellular antioxidative defence at the post-transcriptional level. This fine-tuning pathway is suggested to function during moderate (5 mu M) Cd exposure while being overwhelmed during more severe (10 mu M) Cd stress. Within this framework, ethylene is required - either directly or indirectly via NADPH oxidase isoform C - to fully induce AOX1 expression. In addition, reciprocal crosstalk between these components was demonstrated in leaves of A. thaliana plants exposed to Cd

    Plant-associated bacteria and their role in the success or failure of metal phytoextraction projects : first observations of a field-related experiment

    Get PDF
    Phytoextraction has been reported as an economically and ecologically sound alternative for the remediation of metal-contaminated soils. Willow is a metal phytoextractor of interest because it allows to combine a gradual contaminant removal with production of biomass that can be valorized in different ways. In this work two willow clones growing on a metal-contaminated site were selected: ‘Belgisch Rood’ (BR) with a moderate metal extraction capacity and ‘Tora’ (TO) with a twice as high metal accumulation. All cultivable bacteria associated with both willow clones were isolated and identified using 16SrDNA ARDRA analysis followed by 16SrDNA sequencing. Further all isolated bacteria were investigated for characteristics that might promote plant growth (production of siderophores, organic acids and indol acetic acid) and for their metal resistance. The genotypic and phenotypic characterization of the isolated bacteria showed that the TO endophytic bacterial population is more diverse and contains a higher percentage of metal-resistant plant growth promoting bacteria than the endophytic population associated with BR. We hypothesize that the difference in the metal accumulation capacity between BR and TO clones might be at least partly related to differences in characteristics of their associated bacterial population
    corecore