15 research outputs found

    A dataset of clinically recorded radar vital signs with synchronised reference sensor signals

    Get PDF
    Using Radar it is possible to measure vital signs through clothing or a mattress from the distance. This allows for a very comfortable way of continuous monitoring in hospitals or home environments. The dataset presented in this article consists of 24 h of synchronised data from a radar and a reference device. The implemented continuous wave radar system is based on the Six-Port technology and operates at 24 GHz in the ISM band. The reference device simultaneously measures electrocardiogram, impedance cardiogram and non-invasive continuous blood pressure. 30 healthy subjects were measured by physicians according to a predefined protocol. The radar was focused on the chest while the subjects were lying on a tilt table wired to the reference monitoring device. In this manner five scenarios were conducted, the majority of them aimed to trigger hemodynamics and the autonomic nervous system of the subjects. Using the database, algorithms for respiratory or cardiovascular analysis can be developed and a better understanding of the characteristics of the radar-recorded vital signs can be gained

    Continuous In-Bed Monitoring of Vital Signs Using a Multi Radar Setup for Freely Moving Patients

    No full text
    In hospitals, continuous monitoring of vital parameters can provide valuable information about the course of a patient’s illness and allows early warning of emergencies. To enable such monitoring without restricting the patient’s freedom of movement and comfort, a radar system is attached under the mattress which consists of four individual radar modules to cover the entire width of the bed. Using radar, heartbeat and respiration can be measured without contact and through clothing. By processing the raw radar data, the presence of a patient can be determined and movements are categorized into the classes “bed exit”, “bed entry”, and “on bed movement”. Using this information, the vital parameters can be assessed in sections where the patient lies calmly in bed. In the first step, the presence and movement classification is demonstrated using recorded training and test data. Next, the radar was modified to perform vital sign measurements synchronized to a gold standard device. The evaluation of the individual radar modules shows that, regardless of the lying position of the test person, at least one of the radar modules delivers accurate results for continuous monitoring.In hospitals, continuous monitoring of vital parameters can provide valuable information about the course of a patient’s illness and allows early warning of emergencies. To enable such monitoring without restricting the patient’s freedom of movement and comfort, a radar system is attached under the mattress which consists of four individual radar modules to cover the entire width of the bed. Using radar, heartbeat and respiration can be measured without contact and through clothing. By processing the raw radar data, the presence of a patient can be determined and movements are categorized into the classes “bed exit”, “bed entry”, and “on bed movement”. Using this information, the vital parameters can be assessed in sections where the patient lies calmly in bed. In the first step, the presence and movement classification is demonstrated using recorded training and test data. Next, the radar was modified to perform vital sign measurements synchronized to a gold standard device. The evaluation of the individual radar modules shows that, regardless of the lying position of the test person, at least one of the radar modules delivers accurate results for continuous monitoring

    The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern

    No full text
    Diatoms are major contributors to the aquatic primary productivity and show an efficient acclimation ability to changing light intensities. Here, we investigated the acclimation of Phaeodactylum tricornutum to different light quality with respect to growth rate, photosynthesis rate, macromolecular composition and the metabolic profile by shifting the light quality from red light (RL) to blue light (BL) and vice versa. Our results show that cultures pre-acclimated to BL and RL exhibited similar growth performance, photosynthesis rates and metabolite profiles. However, light shift experiments revealed rapid and severe changes in the metabolite profile within 15 min as the initial reaction of light acclimation. Thus, during the shift from RL to BL, increased concentrations of amino acids and TCA cycle intermediates were observed whereas during the BL to RL shift the levels of amino acids were decreased and intermediates of glycolysis accumulated. Accordingly, on the time scale of hours the RL to BL shift led to a redirection of carbon into the synthesis of proteins, whereas during the BL to RL shift an accumulation of carbohydrates occurred. Thus, a vast metabolic reorganization of the cells was observed as the initial reaction to changes in light quality. The results are discussed with respect to a putative direct regulation of cellular enzymes by light quality and by transcriptional regulation. Interestingly, the short-term changes in the metabolome were accompanied by changes in the degree of reduction of the plastoquinone pool. Surprisingly, the RL to BL shift led to a severe inhibition of growth within the first 48 h which was not observed during the BL to RL shift. Furthermore, during the phase of growth arrest the photosynthetic performance did not change. We propose arguments that the growth arrest could have been caused by the reorganization of intracellular carbon partitioning

    A dataset of radar-recorded heart sounds and vital signs including synchronised reference sensor signals

    No full text
    Radar systems allow for contactless measurements of vital signs such as heart sounds, the pulse signal, and respiration. This approach is able to tackle crucial disadvantages of state-of-the-art monitoring devices such as the need for permanent wiring and skin contact. Potential applications include the employment in a hospital environment but also in home care or passenger vehicles. This dataset consists of synchronised data which are acquired using a Six-Port-based radar system operating at 24 GHz, a digital stethoscope, an ECG, and a respiration sensor. 11 test subjects were measured in different defined scenarios and at several measurement positions such as at the carotid, the back, and several frontal positions on the thorax. Overall, around 223 minutes of data were acquired at scenarios such as breath-holding, post-exercise measurements, and while speaking. The presented dataset contains reference-labeled ECG signals and can therefore easily be used to either test algorithms for monitoring the heart rate, but also to gain insights about characteristic effects of radar-based vital sign monitoring

    Radar-based heart sound detection

    No full text
    This paper introduces heart sound detection by radar systems, which enables touch-free and continuous monitoring of heart sounds. The proposed measurement principle entails two enhancements in modern vital sign monitoring. First, common touch-based auscultation with a phonocardiograph can be simplified by using biomedical radar systems. Second, detecting heart sounds offers a further feasibility in radar-based heartbeat monitoring. To analyse the performance of the proposed measurement principle, 9930 seconds of eleven persons-under-tests’ vital signs were acquired and stored in a database using multiple, synchronised sensors: a continuous wave radar system, a phonocardiograph (PCG), an electrocardiograph (ECG), and a temperature-based respiration sensor. A hidden semi-Markov model is utilised to detect the heart sounds in the phonocardiograph and radar data and additionally, an advanced template matching (ATM) algorithm is used for state-of-the-art radar-based heartbeat detection. The feasibility of the proposed measurement principle is shown by a morphology analysis between the data acquired by radar and PCG for the dominant heart sounds S1 and S2: The correlation is 82.97 ± 11.15% for 5274 used occurrences of S1 and 80.72 ± 12.16% for 5277 used occurrences of S2. The performance of the proposed detection method is evaluated by comparing the F-scores for radar and PCG-based heart sound detection with ECG as reference: Achieving an F1 value of 92.22 ± 2.07%, the radar system approximates the score of 94.15 ± 1.61% for the PCG. The accuracy regarding the detection timing of heartbeat occurrences is analysed by means of the root-mean-square error: In comparison to the ATM algorithm (144.9 ms) and the PCG-based variant (59.4 ms), the proposed method has the lowest error value (44.2 ms). Based on these results, utilising the detected heart sounds considerably improves radar-based heartbeat monitoring, while the achieved performance is also competitive to phonocardiography.The research project GUARDIAN is supported by the Federal Ministry of Education and Research, Berlin, Germany, project grant No. 16SV7694

    A clinically evaluated interferometric continuous-wave radar system for the contactless measurement of human vital parameters

    Get PDF
    Vital parameters are key indicators for the assessment of health. Conventional methods rely on direct contact with the patients’ skin and can hence cause discomfort and reduce autonomy. This article presents a bistatic 24 GHz radar system based on an interferometric six-port architecture and features a precision of 1 µm in distance measurements. Placed at a distance of 40 cm in front of the human chest, it detects vibrations containing respiratory movements, pulse waves and heart sounds. For the extraction of the respiration rate, time-domain approaches like autocorrelation, peaksearch and zero crossing rate are compared to the Fourier transform, while template matching and a hidden semi-Markov model are utilized for the detection of the heart rate from sphygmograms and heart sounds. A medical study with 30 healthy volunteers was conducted to collect 5.5 h of data, where impedance cardiogram and electrocardiogram were used as gold standard for synchronously recording respiration and heart rate, respectively. A low root mean square error for the breathing rate (0.828 BrPM) and a high overall F1 score for heartbeat detection (93.14%) could be achieved using the proposed radar system and signal processing.Funding: The research project GUARDIAN was funded by the Federal Ministry of Education and Research, Berlin, Germany, grant number 16SV7694. Acknowledgments: We acknowledge support by Deutsche Forschungsgemeinschaft and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) within the funding programme Open Access Publishing

    A Clinically Evaluated Interferometric Continuous-Wave Radar System for the Contactless Measurement of Human Vital Parameters

    No full text
    Vital parameters are key indicators for the assessment of health. Conventional methods rely on direct contact with the patients’ skin and can hence cause discomfort and reduce autonomy. This article presents a bistatic 24 GHz radar system based on an interferometric six-port architecture and features a precision of 1 µm in distance measurements. Placed at a distance of 40 cm in front of the human chest, it detects vibrations containing respiratory movements, pulse waves and heart sounds. For the extraction of the respiration rate, time-domain approaches like autocorrelation, peaksearch and zero crossing rate are compared to the Fourier transform, while template matching and a hidden semi-Markov model are utilized for the detection of the heart rate from sphygmograms and heart sounds. A medical study with 30 healthy volunteers was conducted to collect 5.5 h of data, where impedance cardiogram and electrocardiogram were used as gold standard for synchronously recording respiration and heart rate, respectively. A low root mean square error for the breathing rate (0.828 BrPM) and a high overall F1 score for heartbeat detection (93.14%) could be achieved using the proposed radar system and signal processing

    Carbon partitioning.

    No full text
    <p>The relative partitioning of C (carbon) into carbohydrates, proteins and lipids was calculated for the 2 h following the light quality changes. Data were calculated on the basis of the FTIR spectra and the net rate of carbon assimilation and, therefore, add up to 100% net carbon assimilation (carbohydrate +protein + lipid bar). Values below zero mean a net loss. Shown are the first 2 h after the light quality change from RL to BL and vice versa. n = 3–6. The exact values are specified in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0099727#pone.0099727.s005" target="_blank">Table S5</a>.</p

    Long-term acclimation to light quality shifts.

    No full text
    <p>The acclimation process of <i>P. tricornutum</i> cultures was observed for 6 days after the light quality shift from BL to RL and RL to BL. Shown are (A) estimated gross oxygen evolution rates at growth light conditions, (B) growth rate per day, (C) maximum values of non-photochemical quenching and (D) concentration of the xanthophyll cycle pigment Ddx at growth light conditions. The NPQ values were measured at illumination with saturating light intensities, while all other values are measured at growth light conditions. The asterisks depict the p-values of the respective data point compared to the steady state (BL to RL shift is compared to RL steady state, RL to BL shift is compared to BL steady state). n = 4–5. The exact values are specified in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0099727#pone.0099727.s001" target="_blank">Table S1</a>.</p

    Carbohydrate and protein levels.

    No full text
    <p>The carbohydrate and protein levels of <i>P. tricornutum</i> cultures during the course of the day were determined for cultures pre-acclimated to (A) BL and (C) RL as well as (B) the changes after a shift from BL to RL and (D) RL to BL. Shown are the relative protein and carbohydrate contents in relation to the values measured at t<sub>0</sub>. The asterisks depict the p-values of the respective data point compared to t<sub>0</sub> for pre-acclimated cultures (A, C) or compared to the steady state the cultures were shifted from at the same time point (B, D). n = 3–6. The exact values are specified in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0099727#pone.0099727.s004" target="_blank">Table S4</a>.</p
    corecore