14 research outputs found

    Measurement of pentosidine in human plasma protein by a single-column high-performance liquid chromatography method with fluorescence detection.

    No full text
    A rapid and sensitive single-column high-performance liquid chromatography method and application for the detection of protein bound pentosidine is described. Pentosidine, a cross-link between arginine and lysine, is a well-characterized advanced glycation endproduct. In order to detect protein-bound pentosidine, plasma proteins were hydrolysed in 6N HCl. Detection of pentosidine is done based on its own fluorescence characteristics using fluorimetric detection (E(x)=325nm, E(m)=385nm). Separation is done, with a run-to-run time of 30min, on a C(18) Allspehere ODS-II column with a citric acid acetonitrile buffer. This detection enables sensitive and specific determination of protein bound pentosidine in plasma with a detection limit of 2.2nmol/l or 0.02pmol/mg protein (signal-to-noise: 6). The intra-assay coefficient variation is 6.5% at a plasma pentosidine concentration of 0.47pmol/mg protein and 2.0% at a concentration of 1.27pmol/mg protein. The inter-assay coefficient variation is 3.1% at a plasma pentosidine concentration of 0.43pmol/mg protein and 1.6% at a concentration of 1.40pmol/mg protein. Linearity is tested in 4 different plasma samples and showed linearity (0-200nmol/l, r(2)>0.99). Recovery of pentosidine in 4 different plasma samples at different concentration levels is 102+/-10% (mean+/-SD). Using this method protein bound pentosidine concentration is investigated in healthy controls (n=24, age 67+/-9 years) and patients with end stage renal disease (n=24, age 65+/-10 years). Higher plasma concentrations of protein bound pentosidine are measured in the patient group as compared with the control group 3.05 (2.03-3.92)pmol/mg protein and 0.21 (0.19-0.33)pmol/mg protein, respectively (median (interquartile range), p<0.00001). These results are consistent with previously reported results

    Increased methylglyoxal formation in plasma and tissues during a glucose tolerance test is derived from exogenous glucose

    No full text
    The dicarbonyl compound methylglyoxal (MGO) is a major precursor in the formation of advanced glycation endproducts (AGEs). MGO and AGEs are increased in subjects with diabetes and are associated with fatal and nonfatal cardiovascular disease. Previously, we have shown that plasma MGO concentrations rapidly increase in the postprandial phase, with a higher increase in individuals with type 2 diabetes. In current study, we investigated whether postprandial MGO formation in plasma and tissues originates from exogenous glu-cose and whether the increased plasma MGO concentration leads to a fast formation of MGO-derived AGEs. We performed a stable isotope-labelled oral glucose tolerance test (OGTT) in 12 healthy males with universally labelled D(+)13C glucose. Analysis of plasma-labelled 13C3 MGO and glucose levels at 11 time-points during the OGTT revealed that the newly formed MGO during OGTT is completely derived from exogenous glucose. Moreover, a fast formation of protein-bound MGO-derived AGEs during the OGTT was observed. In accordance, ex-vivo incubation of MGO with plasma or albumin showed a rapid decrease in MGO and a fast increase in MGO-derived AGEs. In an intraperitoneal glucose tolerance test in C57BL/6J mice, we confirmed that the formation of postprandial MGO is derived from exogenous glucose in plasma and also showed in tissues that MGO is increased and this is also from exogenous glucose. Collectively, increased formation of MGO during a glucose tolerance test arises from ex-ogenous glucose both in plasma and in tissues, and this leads to a fast formation of MGO-derived AGEs

    N{epsilon}-(carboxymethyl)lysine during the early development of hypertension

    No full text
    Advanced glycation end products (AGEs) are associated with hypertension. Whether N-epsilon-(carhoxymethyl)lysine (CML) contributes to the development of hypertension in young spontaneously hypertensive rats (SHR) remains to be established compared to W. We determined blood pressure, renal function, marker for oxidative stress (OS), and CML in young WKY rats and SHR. We found blood pressure was increased in SHR with no difference in renal function and OS compared to WKY. CML was elevated in plasma (2.3 +/- 0.3 vs. 1.3 +/- 0.2 mu mol/L) and kidney (1.0 +/- 0. 1 vs. 0.5 +/- 0.1 mu mol/L) compared to WKY. Early CML accumulation may contribute to the development of hypertension potentially by inducing early renal inflammation independent of glomerular dysfunction or oxidative stress

    Corrigendum to “Quantification of dicarbonyl compounds in commonly consumed foods and drinks; presentation of a food composition database for dicarbonyls” [Food Chemistry, 339 (2020) 128063]

    No full text
    Dicarbonyls are reactive precursors of advanced glycation endproducts. They are formed endogenously and during food processing. Currently, a comprehensive database on dicarbonyls in foods that covers the entire range of food groups is lacking, limiting knowledge about the amount of dicarbonyls that is ingested via food. The aim of this study was to analyze the dicarbonyls methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) in commonly-consumed products in a Western diet. We validated a UHPLC-MS/MS method to quantify MGO, GO, and 3-DG. We present a dietary dicarbonyl database of 223 foods and drinks. Total dicarbonyl concentrations were highest in dried fruit, Dutch spiced cake, and candy bars (> 400 mg/kg). Total dicarbonyl concentrations were lowest in tea, dairy, light soft drinks, and rice (<10 mg/kg). The presented database of MGO, GO, and 3-DG opens the possibility to accurately estimate dietary exposure to these dicarbonyls, and explore their physiological impact on human health

    Association of plasma sRAGE, but not esRAGE with lung function impairment in COPD

    No full text
    RATIONALE: Plasma soluble Receptor for Advanced Glycation End Product (sRAGE) is considered as a biomarker in COPD. The contribution of endogenous sRAGE (esRAGE) to the pool of plasma sRAGE and the implication of both markers in COPD pathogenesis is however not clear yet. The aim of the current study was therefore to measure plasma levels of esRAGE comparative to total sRAGE in patients with COPD and a control group. Further, we established the relations of esRAGE and total sRAGE with disease specific characteristics such as lung function and DLCO, and with different circulating AGEs. METHODS: Plasma levels of esRAGE and sRAGE were measured in an 88 patients with COPD and in 55 healthy controls. FEV1 (%predicted) and FEV1/VC (%) were measured in both groups; DLCO (%predicted) was measured in patients only. In this study population we previously reported that the AGE N-(carboxymethyl) lysine (CML) was decreased, N-(carboxyethyl) lysine (CEL) increased and pentosidine was not different in plasma of COPD patients compared to controls. RESULTS: Plasma esRAGE (COPD: 533.9 +/- 412.4, Controls: 848.7 +/- 690.3 pg/ml; p = 0.000) was decreased in COPD compared to controls. No significant correlations were observed between plasma esRAGE levels and lung function parameters or plasma AGEs. A positive correlation was present between esRAGE and total sRAGE levels in the circulation. Confirming previous findings, total sRAGE (COPD: 512.6 +/- 403.8, Controls: 1834 +/- 804.2 pg/ml; p < 0.001) was lower in patients compared to controls and was positively correlated FEV1 (r = 0.235, p = 0.032), FEV1/VC (r = 0.218, p = 0.047), and DLCO (r = 0.308, p = 0.006). sRAGE furthermore did show a significant positive association with CML (r = 0.321, p = 0.003). CONCLUSION: Although plasma esRAGE is decreased in COPD patients compared to controls, only total sRAGE showed a significant and independent association with FEV1, FEV1/VC and DLCO, indicating that total sRAGE but not esRAGE may serve as marker of COPD disease state and severity

    Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine : The CODAM study

    No full text
    Background & aims: Advanced glycation endproducts (AGEs) are formed by the reaction between reducing sugars and proteins. AGEs in the body have been associated with several age-related diseases. High-heat treated and most processed foods are rich in AGEs. The aim of our study was to investigate whether dietary AGEs, are associated with plasma and urinary AGE levels.Methods: In 450 participants of the Cohort on Diabetes and Atherosclerosis Maastricht study (CODAM study) we measured plasma and urine concentrations of the AGEs Nε-(carboxymethyl)lysine (CML), Nε-(1-carboxyethyl)lysine (CEL) and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) using UPLC-MS/MS. We also estimated dietary intake of CML, CEL and MG-H1 with the use of a dietary AGE database and a food frequency questionnaire (FFQ). We used linear regression to investigate the association between standardized dietary AGE intake and standardized plasma or urinary AGE levels, after adjustment for age, sex, glucose metabolism status, waist circumference, kidney function, energy- and macro-nutrient intake, smoking status, physical activity, alcohol intake, LDL-cholesterol and markers of oxidative stress.Results: We found that higher intake of dietary CML, CEL and MG-H1 was associated with significantly higher levels of free plasma and urinary CML, CEL and MG-H1 (βCML = 0.253 (95% CI 0.086; 0.415), βCEL = 0.194 (95% CI 0.040; 0.339), βMG-H1 = 0.223 (95% CI 0.069; 0.373) for plasma and βCML = 0.223 (95% CI 0.049; 0.393), βCEL = 0.180 (95% CI 0.019; 0.332), βMG-H1 = 0.196 (95% CI 0.037; 0.349) for urine, respectively). In addition, we observed non-significant associations of dietary AGEs with their corresponding protein bound plasma AGEs.Conclusion: We demonstrate that higher intake of dietary AGEs is associated with higher levels of AGEs in plasma and urine. Our findings may have important implications for those who ingest a diet rich in AGEs

    Low 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 levels are independently associated with macroalbuminuria, but not with retinopathy and macrovascular disease in type 1 diabetes: the EURODIAB prospective complications study

    No full text
    Background Low circulating levels of total vitamin D [25(OH)D] and 25(OH)D3 have been associated with vascular complications in few studies on individuals with type 1 diabetes. However, these measures are affected by UV light exposure. Circulating 25(OH)D2, however, solely represents dietary intake of vitamin D2, but its association with complications of diabetes is currently unknown. We investigated the associations between 25(OH)D2 and 25(OH)D3 and the prevalence of albuminuria, retinopathy and cardiovascular disease (CVD) in individuals with type 1 diabetes. Methods We measured circulating 25(OH)D2 and 25(OH)D3 in 532 individuals (40¿±¿10 years old, 51 % men) with type 1 diabetes who participated in the EURODIAB Prospective Complications Study. Cross-sectional associations of 25(OH)D2 and 25(OH)D3 with albuminuria, retinopathy and CVD were assessed with multiple logistic regression analyses adjusted for age, sex, season, BMI, smoking, HbA1c, total-HDL-cholesterol-ratio, systolic blood pressure, antihypertensive medication, eGFR, physical activity, alcohol intake, albuminuria, retinopathy and CVD, as appropriate. Results Fully adjusted models revealed that 1 nmol/L higher 25(OH)D2 and 10 nmol/L higher 25(OH)D3 were associated with lower prevalence of macroalbuminuria with ORs (95 % CI) of 0.56 (0.43;0.74) and 0.82 (0.72;0.94), respectively. These vitamin D species were not independently associated with microalbuminuria, non-proliferative and proliferative retinopathy or CVD. Conclusions In individuals with type 1 diabetes, both higher 25(OH)D2 and 25(OH)D3 are associated with a lower prevalence of macroalbuminuria, but not of retinopathy and CVD. Prospective studies are needed to further examine the associations between 25(OH)D2 and 25(OH)D3 and the development of microvascular complications and CVD in type 1 diabetes

    Higher habitual intake of dietary dicarbonyls is associated with higher corresponding plasma dicarbonyl concentrations and skin autofluorescence: the Maastricht Study

    Get PDF
    Background: Dicarbonyls are highly reactive compounds and major precursors of advanced glycation end products (AGEs). Both dicarbonyls and AGEs are associated with development of age-related diseases. Dicarbonyls are formed endogenously but also during food processing. To what extent dicarbonyls from the diet contribute to circulating dicarbonyls and AGEs in tissues is unknown.Objectives: To examine cross-sectional associations of dietary dicarbonyl intake with plasma dicarbonyl concentrations and skin AGEs.Methods: In 2566 individuals of the population-based Maastricht Study (age: 60 +/- 8 y, 50% males, 26% with type 2 diabetes), we estimated habitual intake of the dicarbonyls methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) by combining FFQs with our dietary dicarbonyl database of MGO, GO, and 3-DG concentrations in> 200 commonly consumed food products. Fasting plasma concentrations of MGO, GO, and 3-DG were measured by ultra-performance liquid chromatography-tandem mass spectrometry. Skin AGEs were measured as skin autofluorescence (SAF), using theAGE Reader. Associations of dietary dicarbonyl intake with their respective plasma concentrations and SAF (all standardized) were examined using linear regression models, adjusted for age, sex, potential confounders related to cardiometabolic risk factors, and lifestyle.Results: Median intake of MGO, GO, and 3-DG was 3.6, 3.5, and 17 mg/d, respectively. Coffee was the main dietary source of MGO, whereas this was bread for GO and 3-DG. In the fully adjusted models, dietary MGO was associated with plasma MGO (beta: 0.08; 95% CI: 0.02, 0.13) and SAF (beta: 0.12; 95% CI: 0.07, 0.17). Dietary GO was associated with plasma GO (beta: 0.10; 95% CI: 0.04, 0.16) but not with SAF. 3-DG was not significantly associated with either plasma 3-DG or SAF.Conclusions: Higher habitual intake of dietary MGO and GO, but not 3-DG, was associated with higher corresponding plasma concentrations. Higher intake of MGO was also associated with higher SAF. These results suggest dietary absorption of MGO and GO. Biological implications of dietary absorption of MGO and GO need to be determined. The study has been approved by the institutional medical ethical committee (NL31329.068.10) and the Minister of Health, Welfare and Sports of the Netherlands (Permit 131088-105234-PG)

    Higher habitual intake of dietary dicarbonyls is associated with higher corresponding plasma dicarbonyl concentrations and skin autofluorescence: the Maastricht Study

    No full text
    Background: Dicarbonyls are highly reactive compounds and major precursors of advanced glycation end products (AGEs). Both dicarbonyls and AGEs are associated with development of age-related diseases. Dicarbonyls are formed endogenously but also during food processing. To what extent dicarbonyls from the diet contribute to circulating dicarbonyls and AGEs in tissues is unknown.Objectives: To examine cross-sectional associations of dietary dicarbonyl intake with plasma dicarbonyl concentrations and skin AGEs.Methods: In 2566 individuals of the population-based Maastricht Study (age: 60 +/- 8 y, 50% males, 26% with type 2 diabetes), we estimated habitual intake of the dicarbonyls methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) by combining FFQs with our dietary dicarbonyl database of MGO, GO, and 3-DG concentrations in> 200 commonly consumed food products. Fasting plasma concentrations of MGO, GO, and 3-DG were measured by ultra-performance liquid chromatography-tandem mass spectrometry. Skin AGEs were measured as skin autofluorescence (SAF), using theAGE Reader. Associations of dietary dicarbonyl intake with their respective plasma concentrations and SAF (all standardized) were examined using linear regression models, adjusted for age, sex, potential confounders related to cardiometabolic risk factors, and lifestyle.Results: Median intake of MGO, GO, and 3-DG was 3.6, 3.5, and 17 mg/d, respectively. Coffee was the main dietary source of MGO, whereas this was bread for GO and 3-DG. In the fully adjusted models, dietary MGO was associated with plasma MGO (beta: 0.08; 95% CI: 0.02, 0.13) and SAF (beta: 0.12; 95% CI: 0.07, 0.17). Dietary GO was associated with plasma GO (beta: 0.10; 95% CI: 0.04, 0.16) but not with SAF. 3-DG was not significantly associated with either plasma 3-DG or SAF.Conclusions: Higher habitual intake of dietary MGO and GO, but not 3-DG, was associated with higher corresponding plasma concentrations. Higher intake of MGO was also associated with higher SAF. These results suggest dietary absorption of MGO and GO. Biological implications of dietary absorption of MGO and GO need to be determined. The study has been approved by the institutional medical ethical committee (NL31329.068.10) and the Minister of Health, Welfare and Sports of the Netherlands (Permit 131088-105234-PG)
    corecore