5,412 research outputs found

    Eowyn as Queen

    Get PDF

    “A Cloud of Constitutional Illegitimacy”: Prospectivity and the De Facto Doctrine in the Gerrymandering Context

    Get PDF
    Courts have traditionally shielded the acts of malapportioned or otherwise illegally constituted legislatures from dissolution by employing the “de facto doctrine,” an ancient common law policy tool with medieval roots. In its most basic form, the de facto doctrine seeks to safeguard the acts of unlawful but well-intentioned public officials from collateral attack out of concern for third-party reliance and a bald recognition of necessity. However, the doctrine as traditionally articulated only serves to validate past official acts; once the official in question has lost the “color of authority,” the doctrine no longer affords his actions de facto validity. Although this has not prevented courts from extending the doctrine, or something like it, to cover prospective acts in certain scenarios, courts have generally avoided “taking a look under the hood” and wrestling with the policy concerns underlying the doctrine to see if they still apply prospectively. This Note examines the potential use of the de facto doctrine in the gerrymandering context. Both racial and partisan gerrymandering present distinct challenges for courts seeking to prospectively apply the de facto doctrine to acts of a state legislature: generally, gerrymanders are created intentionally, making it harder to apply any “good faith” exception; illegal gerrymandering by its nature trespasses on important constitutional guarantees; and the traditional motivations for the de facto doctrine—necessity and reliance—arguably do not apply to legislation crafted by an unconstitutional government body seeking to preserve its power. By examining the historical roots of the doctrine, tracing its modern development, and considering its underlying policy rationales, this Note seeks to answer two questions: (1) how have courts expanded the de facto doctrine and its animating principles prospectively?; and (2) how do those expansions shape the prospective application of the doctrine in the gerrymandering context

    Sensitivity to Hand Path Curvature during Reaching

    Get PDF
    People optimize reaching to make straight and smooth movements. We performed experiments characterizing human sensitivity to hand path deviations from a straight reach. Vision of the arm was blocked. Subjects either moved the hand along paths of constrained curvature, or a robot moved the relaxed limb along similar trajectories (active and passive conditions, respectively). Subjects responded after each trial whether or not they thought the movement curved convex right. In a series of three experiments, we tested the effects of modifying visual feedback of hand position to suppress curvature, isotonic muscle activation, and a distracter task on subjects ability to detect curvature during reaching. We found that both active reaching and artificial minimization of visual hand path deviations significantly decreased proprioceptive curvature sensitivity. Specifically, isotonic contraction of muscles antagonistic to the movement decreased sensitivity to curvature while agonistic contraction had no effect. The distracter task did not significantly affect proprioceptive sensitivity, though it did interfere with the detrimental effect of minimizing visual error feedback. These findings demonstrate that: 1) antagonist muscle activation decreases efficacy of proprioceptive feedback during hand path curvature estimation, and 2) vision\u27s dominance over proprioception can be manipulated by altering the attentional demands of the task

    Dataglove Measurement of Joint Angles in Sign Language Handshapes

    Get PDF
    In sign language research, we understand little about articulatory factors involved in shaping phonemic boundaries or the amount (and articulatory nature) of acceptable phonetic variation between handshapes. To date, there exists no comprehensive analysis of handshape based on the quantitative measurement of joint angles during sign production. The purpose of our work is to develop a methodology for collecting and visualizing quantitative handshape data in an attempt to better understand how handshapes are produced at a phonetic level. In this pursuit, we seek to quantify the flexion and abduction angles of the finger joints using a commercial data glove (CyberGlove; Immersion Inc.). We present calibration procedures used to convert raw glove signals into joint angles. We then implement those procedures and evaluate their ability to accurately predict joint angle. Finally, we provide examples of how our recording techniques might inform current research questions

    Engine isolation for structural-borne interior noise reduction in a general aviation aircraft

    Get PDF
    Engine vibration isolation for structural-borne interior noise reduction is investigated. A laboratory based test procedure to simulate engine induced structure-borne noise transmission, the testing of a range of candidate isolators for relative performance data, and the development of an analytical model of the transmission phenomena for isolator design evaluation are addressed. The isolator relative performance test data show that the elastomeric isolators do not appear to operate as single degree of freedom systems with respect to noise isolation. Noise isolation beyond 150 Hz levels off and begins to decrease somewhat above 600 Hz. Coupled analytical and empirical models were used to study the structure-borne noise transmission phenomena. Correlation of predicted results with measured data show that (1) the modeling procedures are reasonably accurate for isolator design evaluation, (2) the frequency dependent properties of the isolators must be included in the model if reasonably accurate noise prediction beyond 150 Hz is desired. The experimental and analytical studies were carried out in the frequency range from 10 Hz to 1000 Hz

    Reengineering Biomedical Engineering Curricula: A New Product Development Approach

    Get PDF
    Product development engineers in medical industries have created design control procedures to ensure high quality designs that are as error-free as possible. The reason is simple; companies must adhere to certain engineering and manufacturing best practices in order to obtain certification of their devices for sale in the US and abroad. We describe here an ongoing effort to apply these industrial best practices to the design and implementation of a novel sequence of undergraduate biomedical computing courses within the Department of Bio-medical Engineering at Marquette University (Milwaukee, Wisconsin). We have tightly integrated our industrial advisory board into this design and development effort. The board has contributed to significantly to the orderly generation of curricular requirements, the development of course implementation designs and the evaluation of these designs per requirements

    Augmenting Sensorimotor Control Using “Goal-Aware” Vibrotactile Stimulation during Reaching and Manipulation Behaviors

    Get PDF
    We describe two sets of experiments that examine the ability of vibrotactile encoding of simple position error and combined object states (calculated from an optimal controller) to enhance performance of reaching and manipulation tasks in healthy human adults. The goal of the first experiment (tracking) was to follow a moving target with a cursor on a computer screen. Visual and/or vibrotactile cues were provided in this experiment, and vibrotactile feedback was redundant with visual feedback in that it did not encode any information above and beyond what was already available via vision. After only 10 minutes of practice using vibrotactile feedback to guide performance, subjects tracked the moving target with response latency and movement accuracy values approaching those observed under visually guided reaching. Unlike previous reports on multisensory enhancement, combining vibrotactile and visual feedback of performance errors conferred neither positive nor negative effects on task performance. In the second experiment (balancing), vibrotactile feedback encoded a corrective motor command as a linear combination of object states (derived from a linear-quadratic regulator implementing a trade-off between kinematic and energetic performance) to teach subjects how to balance a simulated inverted pendulum. Here, the tactile feedback signal differed from visual feedback in that it provided information that was not readily available from visual feedback alone. Immediately after applying this novel “goal-aware” vibrotactile feedback, time to failure was improved by a factor of three. Additionally, the effect of vibrotactile training persisted after the feedback was removed. These results suggest that vibrotactile encoding of appropriate combinations of state information may be an effective form of augmented sensory feedback that can be applied, among other purposes, to compensate for lost or compromised proprioception as commonly observed, for example, in stroke survivors

    Design and test of aircraft engine isolators for reduced interior noise

    Get PDF
    Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators

    Elastic, Viscous, and Mass Load Effects on Poststroke Muscle Recruitment and Co-contraction During Reaching: A Pilot Study

    Get PDF
    Background: Resistive exercise after stroke can improve strength (force-generating capacity) without increasing spasticity (velocity-dependent hypertonicity). However, the effect of resistive load type on muscle activation and co-contraction after stroke is not clear. Objective: The purpose of this study was to determine the effect of load type (elastic, viscous, or mass) on muscle activation and co-contraction during resisted forward reaching in the paretic and nonparetic arms after stroke. Design: This investigation was a single-session, mixed repeated-measures pilot study. Methods: Twenty participants (10 with hemiplegia and 10 without neurologic involvement) reached forward with each arm against equivalent elastic, viscous, and mass loads. Normalized shoulder and elbow electromyography impulses were analyzed to determine agonist muscle recruitment and agonist-antagonist muscle co-contraction. Results: Muscle activation and co-contraction levels were significantly higher on virtually all outcome measures for the paretic and nonparetic arms of the participants with stroke than for the matched control participants. Only the nonparetic shoulder responded to load type with similar activation levels but variable co-contraction responses relative to those of the control shoulder. Elastic and viscous loads were associated with strong activation; mass and viscous loads were associated with minimal co-contraction. Limitations: A reasonable, but limited, range of loads was available. Conclusions: Motor control deficits were evident in both the paretic and the nonparetic arms after stroke when forward reaching was resisted with viscous, elastic, or mass loads. The paretic arm responded with higher muscle activation and co-contraction levels across all load conditions than the matched control arm. Smaller increases in muscle activation and co-contraction levels that varied with load type were observed in the nonparetic arm. On the basis of the response of the nonparetic arm, this study provides preliminary evidence suggesting that viscous loads elicited strong muscle activation with minimal co-contraction. Further intervention studies are needed to determine whether viscous loads are preferable for poststroke resistive exercise programs
    • …
    corecore