111 research outputs found

    Prevention Program of Internet Addiction in Adolescents: Implementation Aspects

    Full text link
    The Article is devoted to the development of a project for the prevention of Internet addiction among young people (a social group most susceptible to Internet addiction due to the specifics of age characteristics). The design is based on ANSI PMI PMBOK Guide 3 Edition, 2004.Π‘Ρ‚Π°Ρ‚ΡŒΡ посвящСна Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° ΠΏΠΎ ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΈΠ½Ρ‚Π΅Ρ€Π½Π΅Ρ‚-зависимости срСди ΠΌΠΎΠ»ΠΎΠ΄Π΅ΠΆΠΈ (ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ Π³Ρ€ΡƒΠΏΠΏΠ° Π² наибольшСй стСпСни подвСрТСнная ΠΈΠ½Ρ‚Π΅Ρ€Π½Π΅Ρ‚-Π°Π΄Π΄ΠΈΠΊΡ†ΠΈΠΈ Π² силу спСцифики возрастных особСнностСй). ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ Π½Π° основС стандарта ANSI PMI PMBOK Guide 3 Edition, 2004

    Effects of exposure of rat erythrocytes to a hypogeomagnetic field

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Background:Hypomagnetic fields can disrupts the normal functioning of living organisms by a mechanism thought to involve oxidative stress. In erythrocytes, oxidative stress can inter alia lead to changes to hemoglobin content and to hemolysis. Objective:To study the effects of hypomagnetism on the state of rat erythrocytes in vitro. Methods:Rat erythrocytes were exposed to an attenuated magnetic field (AMF) or Earth’s magnetic field (EMF), in the presence of tert-butyl hydroperoxide (TBHP) as inducer of oxidative stress. Determinations: total hemoglobin (and its three forms – oxyhemoglobin, methemoglobin, and hemichrome) released from erythrocytes, spectral data (500–700 nm); oxygen radical concentrations, electron paramagnetic resonance. Results:AMF and EMF exposed erythrocytes were compared. After 4 h incubation at high TBHP concentrations (>700 ΞΌM), AMF exposed erythrocytes released significantly more (p<0.05) hemoglobin (Hb), mostly as methemoglobin (metHb). Conversely, after 24 h incubation at low TBHP concentrations (β©½350 ΞΌM), EMF exposed erythrocytes released significantly more (p<0.001) hemoglobin, with metHb as a significant proportion of the total Hb. Erythrocytes exposed to AMF generated more radicals than those exposed to the EMF. Conclusion:Under particular conditions of oxidative stress, hypomagnetic fields can disrupt the functional state of erythrocytes and promote cell death; an additive effect is implicated

    Analytical derivation of DC SQUID response

    Get PDF
    Β© 2016 IOP Publishing Ltd.We consider voltage and current response formation in DC superconducting quantum interference device (SQUID) with overdamped Josephson junctions in resistive and superconducting state in the context of a resistively shunted junction (RSJ) model. For simplicity we neglect the junction capacitance and the noise effect. Explicit expressions for the responses in resistive state were obtained for a SQUID which is symmetrical with respect to bias current injection point. Normalized SQUID inductance (where Ic is the critical current of Josephson junction, L is the SQUID inductance, e is the electron charge and ℏ is the Planck constant) was assumed to be within the range l ≀ 1, subsequently expanded up to using two fitting parameters. SQUID current response in the superconducting state was considered for arbitrary value of the inductance. The impact of small technological spread of parameters relevant to low-temperature superconductor (LTS) technology was studied, using a generalization of the developed analytical approach, for the case of a small difference of critical currents and shunt resistances of the Josephson junctions, and inequality of SQUID inductive shoulders for both resistive and superconducting states. Comparison with numerical calculation results shows that developed analytical expressions can be used in practical LTS SQUIDs and SQUID-based circuits design, e.g. large serial SQIF, drastically decreasing the time of simulation

    Adiabatic Superconducting Artificial Neural Network: Basic Cells

    Get PDF
    We consider adiabatic superconducting cells operating as an artificial neuron and synapse of a multilayer perceptron (MLP). Their compact circuits contain just one and two Josephson junctions, respectively. While the signal is represented as magnetic flux, the proposed cells are inherently nonlinear and close-to-linear magnetic flux transformers. The neuron is capable of providing a one-shot calculation of sigmoid and hyperbolic tangent activation functions most commonly used in MLP. The synapse features by both positive and negative signal transfer coefficients in the range ~ (-0.5,0.5). We briefly discuss implementation issues and further steps toward multilayer adiabatic superconducting artificial neural network which promises to be a compact and the most energy-efficient implementation of MLP.Comment: 5 pages, 2 figure

    ΠœΠ•Π’ΠΠ‘ΠžΠ›Π˜Π§Π•Π‘ΠšΠΠ― Π’Π•Π ΠΠŸΠ˜Π― ПРИ Π˜Π¨Π•ΠœΠ˜Π§Π•Π‘ΠšΠžΠœ Π˜ΠΠ‘Π£Π›Π¬Π’Π•

    Get PDF
    The article shows the world experience of metabolic therapy use in the treatment of ischemic stroke. The issue still remains prominent. The reasonability of prescribing metabolic drugs is not completely clear, its effectiveness has not been fully proved, despite numerous studies which show only trends. The article presents an overview of the most popular drugs of different pharmacological groups with a metabolic effect which affect different parts of the ischemic cascade. Ethylmethylhydroxypyridine succinate and cytoflavin have predominantly antihypoxic effect, improve functional outcome and neurological functions, and normalize overall well-being and adaptation. Cerebrolysin is a complex of low molecular weight biologically active peptides derived from the pig’s brain. It has a multimodal effect on the brain, helps to reduce the volume of cerebral infarction, restores neurologic functions and improves the functional outcome. Cortexin is a mixture of cattle brain polypeptides, also has a complex action that provides the most complete reversion of neurological deficit, improves cognitive functions and the functional outcome, reduces the level of paroxysmal convulsive readiness and improves bioelectric activity of the brain. Citicoline is a precursor of cell membrane key ultrastructures, contributes to significant reduction in the volume of cortical brain damage, improves cholinergic transmission, which results in better clinical outcome, even despite the questionable impact on the neurological status. Choline Alfoscerate is a precursor of choline, and the use of the drug significantly limits the growth of the cerebral infarction area starting from the first day of therapy, leads to reversion of neurological symptoms and achievement of rehabilitation goals. Actovegin is deproteinized derivative of calf blood, activates metabolism in tissues, improves trophism and stimulates regeneration. In a large study, it was shown that Actovegin improved cognitive function in patients who had experienced a stroke,. The drug does not significantly improve the neurological status of patients after a stroke, but it reduces the risk of the stroke development in the next 10 years. Thus, we analyzed mechanisms of medical substances action and data of experimental and clinical studies, including ones after thrombolytic therapy and with inclusion of drugs for primary and secondary prevention of ischemic stroke. The reasonability and effectiveness of prescribing a combination of drugs of different pharmacological groups affecting brain metabolism remains controversial, since the excessive drug treatment may have complications. The safety of metabolic therapy is in doubt, and some of authors views presented confirm the need for additional large independent studies.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ продСмонстрирован ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΉ ΠΎΠΏΡ‹Ρ‚ примСнСния мСтаболичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π² Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚Π°. Вопрос являСтся рСзонансным. Π¦Π΅Π»Π΅ΡΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ назначСния мСтаболичСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π΄ΠΎ ΠΊΠΎΠ½Ρ†Π° Π½Π΅ ясна, ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π΅ Π΄ΠΎΠΊΠ°Π·Π°Π½Π°, нСсмотря Π½Π° многочислСнныС исслСдования, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΠΈ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСн ΠΎΠ±Π·ΠΎΡ€ самых популярных лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΈΠ· Ρ€Π°Π·Π½Ρ‹Ρ… фармакологичСских Π³Ρ€ΡƒΠΏΠΏ с мСтаболичСским дСйствиСм, ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… влияниС Π½Π° Ρ€Π°Π·Π½Ρ‹Π΅ звСнья ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ каскада. Π­Ρ‚ΠΈΠ»- мСтилгидроксипиридина сукцинат ΠΈ Π¦ΠΈΡ‚ΠΎΡ„Π»Π°Π²ΠΈΠ½ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ прСимущСствСнно антигипоксантным дСйствиСм, ΡƒΠ»ΡƒΡ‡ΡˆΠ°ΡŽΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ исход, ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‚ Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡŽ нСврологичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΠ±Ρ‰Π΅Π³ΠΎ самочувствия ΠΈ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ. Π¦Π΅Ρ€Π΅Π±Ρ€ΠΎΠ»ΠΈΠ·ΠΈΠ½ β€” комплСкс низкомолСкулярных биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° свиньи, ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΠΌΡƒΠ»ΡŒΡ‚ΠΈ-ΠΌΠΎΠ΄Π°Π»ΡŒΠ½Ρ‹ΠΌ дСйствиСм Π½Π° Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠΉ ΠΌΠΎΠ·Π³, способствуСт ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ объСма ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚Π° Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°, Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡŽ нСврологичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исхода. ΠšΠΎΡ€Ρ‚Π΅ΠΊΡΠΈΠ½ β€” ΠΏΠΎΠ»ΠΈΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Ρ‹ ΠΊΠΎΡ€Ρ‹ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° скота, Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ комплСксным дСйствиСм, Ρ‡Ρ‚ΠΎ обСспСчиваСт Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½Ρ‹ΠΉ рСгрСсс нСврологичСского Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π°, ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исхода, ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ Ρ‚Π°ΠΊΠΆΠ΅ сниТаСт ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΏΠ°Ρ€ΠΎΠΊΡΠΈΠ·ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ судороТной готовности ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ°Π΅Ρ‚ Π±ΠΈΠΎΡΠ»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°. Π¦ΠΈΡ‚ΠΈΠΊΠΎΠ»ΠΈΠ½ являСтся ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠΌ ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… ΡƒΠ»ΡŒΡ‚Ρ€Π°ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹, способствуСт Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ объСма ΠΊΠΎΡ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ пораТСния Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°, ΡƒΠ»ΡƒΡ‡ΡˆΠ°Π΅Ρ‚ Ρ…ΠΎΠ»ΠΈΠ½Π΅Ρ€Π³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρƒ, Ρ‡Ρ‚ΠΎ сопряТСно с Π»ΡƒΡ‡ΡˆΠΈΠΌ клиничСским исходом, Π΄Π°ΠΆΠ΅ нСсмотря Π½Π° Π½Π΅ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠ΅ влияниС Π½Π° нСврологичСский статус. Π₯ΠΎΠ»ΠΈΠ½Π° Π°Π»ΡŒΡ„ΠΎΡΡ†Π΅Ρ€Π°Ρ‚ являСтся ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠΌ Ρ…ΠΎΠ»ΠΈΠ½Π°, использованиС ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° сущСствСнно ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π·ΠΎΠ½Ρ‹ ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚Π° ΠΌΠΎΠ·Π³Π° с ΠΏΠ΅Ρ€Π²Ρ‹Ρ… суток Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ, ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ рСгрСссу нСврологичСской симптоматики ΠΈ Π΄ΠΎΡΡ‚ΠΈΠΆΠ΅Π½ΠΈΡŽ поставлСнных Ρ€Π΅Π°Π±ΠΈΠ»ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ†Π΅Π»Π΅ΠΉ. АктовСгин β€” Π΄Π΅ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΈ- Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π³Π΅ΠΌΠΎΠ΄Π΅Ρ€ΠΈΠ²Π°Ρ‚ ΠΊΡ€ΠΎΠ²ΠΈ тСлят, Π°ΠΊΡ‚ΠΈΠ²ΠΈΠ·ΠΈΡ€ΡƒΠ΅Ρ‚ ΠΎΠ±ΠΌΠ΅Π½ вСщСств Π² тканях, ΡƒΠ»ΡƒΡ‡ΡˆΠ°Π΅Ρ‚ Ρ‚Ρ€ΠΎΡ„ΠΈΠΊΡƒ ΠΈ стимулируСт процСсс Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ. Π’ ΠΊΡ€ΡƒΠΏΠ½ΠΎΠΌ исслСдовании Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΠ΅Ρ€Π΅Π½Π΅ΡΡˆΠΈΡ… ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚, АктовСгин ΡƒΠ»ΡƒΡ‡ΡˆΠ°Π΅Ρ‚ ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠŸΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ достовСрно Π½Π΅ ΡƒΠ»ΡƒΡ‡ΡˆΠ°Π΅Ρ‚ нСврологичСский статус ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² послС ΡΠΎΡΡ‚ΠΎΡΠ²ΡˆΠ΅Π³ΠΎΡΡ ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚Π°, ΠΎΠ΄Π½Π°ΠΊΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ дСсятилСтний риск развития ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚Π°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π½Ρ‹ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ дСйствия лСкарствСнных вСщСств ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ клиничСских исслСдований, Π² Ρ‚ΠΎΠΌ числС послС провСдСния тромболитичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΈ с Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ ΠΈ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠΉ ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚Π°. Π¦Π΅Π»Π΅ΡΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ назначСния ΠΈ эффСктивности примСнСния ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Ρ€Π°Π·Π½Ρ‹Ρ… фармакологичСских Π³Ρ€ΡƒΠΏΠΏ, Π²Π»ΠΈΡΡŽΡ‰ΠΈΡ… Π½Π° ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°, остаСтся спорной, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ полипрогмазия ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ ослоТнСния. ΠŸΠΎΠ΄Π½ΠΈΠΌΠ°Π΅Ρ‚ΡΡ вопрос бСзопасности мСтаболичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ, прСдставлСны обоснованныС сомнСния Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π°Π²Ρ‚ΠΎΡ€ΠΎΠ², Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅Ρ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΡ€ΡƒΠΏΠ½Ρ‹Ρ… нСзависимых исслСдований

    Π‘Π ΠΠ’ΠΠ•ΠΠ˜Π• Π”Π’Π£Π₯ ΠœΠ•Π’ΠžΠ”Π˜Πš ΠšΠΠ’Π•Π’Π•Π Π˜Π—ΠΠ¦Π˜Π˜ Π›Π£Π§Π•Π’ΠžΠ™ ΠΠ Π’Π•Π Π˜Π˜: ΠŸΠΠ›Π¬ΠŸΠΠ’ΠžΠ ΠΠžΠ™ И Π‘ Π£Π›Π¬Π’Π ΠΠ—Π’Π£ΠšΠžΠ’Π«Πœ ΠšΠžΠΠ’Π ΠžΠ›Π•Πœ

    Get PDF
    Anatomical landmarks and palpation are traditionally used for radial arterial catheterization in emergency units. Despite the successful use ofΒ ultrasound monitoring for central venous access, there is a lack of evidence about the benefits of the ultrasound guidance for peripheral arterial cannulation.The objective:Β to compare two methods of radial arterial catheterization (the traditional one based on palpation and the method under ultrasound guidance) in the patients undergoing planned surgery.Subjects and methods.Β 40 patients participated in the prospective cohort study, all of them had planned surgeries. In Group 1, the traditional method was used for arterial catheterization (the palpation group), and in Group 2 it was done under ultrasound guidance (the ultrasound group). The following parameters were recorded for both groups: number of attempts, number of puncture sites, complications and their type, time of catheterization. The number of cannulation attempts was taken as a primary endpoint.Results.Β The statistically significant correlation was found between the method of catheterization and the number of attempts (Pearson's chi-squared testΒ =Β 29.562, dfΒ =Β 6,Β pΒ &lt;Β 0.001), places of puncture (Pearson's chi-squared testΒ =Β 10.365, dfΒ =Β 3,Β pΒ =Β 0.015). In the ultrasound group, the first attempt of cannulation was a success in 19 cases (95%;Β CIΒ 73βˆ’99%), while in the palpation group, the first attempt was a success in 2 cases (10%;Β CIΒ 2βˆ’33%). The one catheterization site was used in 95% of cases in the ultrasound group (CIΒ 73βˆ’99%; 1 observation). While in Group 2 (the palpation group), two sites of cannulation and more were required in 50% of patients (CIΒ 30βˆ’17%; 10 observations). Among complications there were hematomas, and no statistically significant correlations were found between the method of puncture and their number in the groups (Pearson's chi-squared testΒ =Β 2.7706, dfΒ =Β 1,Β pΒ =Β 0.09601). The time spent on catheterization in the ultrasound group was shorter versus the palpation group (WΒ =Β 344,Β pΒ &lt;Β 0.001) and it made 101 sec. (51; 144) and 194 sec. (153; 311) respectively.Conclusion:Β Compared to the traditional (palpation) method, the radial arterial catheterization guided by ultrasound possesses such benefits as high chances of successful cannulation with the first attempt, fewer sites required to provide arterial access and total time required for the manipulation.Π’Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎ для ΠΊΠ°Ρ‚Π΅Ρ‚Π΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ Π² отдСлСниях анСстСзиологии-Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ†ΠΈΠΈ ΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ анатомичСскиС ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€Ρ‹ ΠΈ ΠΏΠ°Π»ΡŒΠΏΠ°Ρ†ΠΈΡŽ. НСсмотря Π½Π° успСх ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠ° ΠΏΡ€ΠΈ обСспСчСнии Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅Π½ΠΎΠ·Π½ΠΎΠ³ΠΎ доступа, Π΄Π°Π½Π½Ρ‹Ρ… Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΏΠΎΠ»ΡŒΠ·Ρ‹ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠ° ΠΏΡ€ΠΈ пСрифСричСской ΠΊΠ°Π½ΡŽΠ»ΡΡ†ΠΈΠΈ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΉ нСдостаточно.ЦСль:Β ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ Π΄Π²Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΊΠ°Ρ‚Π΅Ρ‚Π΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ (ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡƒΡŽ Π½Π° ΠΏΠ°Π»ΡŒΠΏΠ°Ρ†ΠΈΠΈ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠ°) Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΡ€ΠΈ ΠΏΠ»Π°Π½ΠΎΠ²Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°Ρ….ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹.Β Π’ проспСктивном ΠΊΠΎΠ³ΠΎΡ€Ρ‚Π½ΠΎΠΌ исслСдовании участвовало 40 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ выполняли ΠΏΠ»Π°Π½ΠΎΠ²Ρ‹Π΅ хирургичСскиС Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°. Π’Β 1-ΠΉΒ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΏΠ΅Ρ€Π΅Π΄ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΊΠ°Ρ‚Π΅Ρ‚Π΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡŽ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ выполняли Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ способом (Π³Ρ€ΡƒΠΏΠΏΠ° Β«ΠΏΠ°Π»ΡŒΠΏΠ°Ρ†ΠΈΠΈΒ»), Π²ΠΎΒ 2-ΠΉΒ βˆ’ с ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹ΠΌ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ (Π³Ρ€ΡƒΠΏΠΏΠ° Β«ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠ°Β»). Π’ ΠΎΠ±Π΅ΠΈΡ… Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… фиксировали количСство ΠΏΠΎΠΏΡ‹Ρ‚ΠΎΠΊ, количСство мСст для ΠΏΡƒΠ½ΠΊΡ†ΠΈΠΈ, ослоТнСния ΠΈ ΠΈΡ… Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€, врСмя ΠΊΠ°Ρ‚Π΅Ρ‚Π΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ. ΠŸΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ считали количСство ΠΏΠΎΠΏΡ‹Ρ‚ΠΎΠΊ ΠΊΠ°Π½ΡŽΠ»ΡΡ†ΠΈΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ВыявлСна статистичСски значимая связь ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΠ°Ρ‚Π΅Ρ‚Π΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ количСством ΠΏΠΎΠΏΡ‹Ρ‚ΠΎΠΊ (Ρ…ΠΈ-ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠŸΠΈΡ€ΡΠΎΠ½Π°Β =Β 29,562, dfΒ =Β 6,Β pΒ &lt;Β 0,001), мСстами для ΠΏΡƒΠ½ΠΊΡ†ΠΈΠΈ (Ρ…ΠΈ-ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠŸΠΈΡ€ΡΠΎΠ½Π°Β =Β 10,365, dfΒ =Β 3,Β pΒ =Β 0,015). Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ Β«ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠ°Β» Π² 19 случаях (95%;Β Π”Π˜Β 73βˆ’99%) ΠΊΠ°Π½ΡŽΠ»ΡΡ†ΠΈΡ Π±Ρ‹Π»Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° с ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠΈ, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ Β«ΠΏΠ°Π»ΡŒΠΏΠ°Ρ†ΠΈΡΒ» лишь Π² 2 случаях (10%;Β Π”Π˜Β 2βˆ’33%). Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠ° Π² 95% случаСв (Π”Π˜Β 73βˆ’99%; 1 наблюдСниС) для катСтСризация ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠ»ΠΈ ΠΎΠ΄Π½ΠΎ мСсто. Π’ΠΎΒ 2-ΠΉΒ ΠΆΠ΅ Π³Ρ€ΡƒΠΏΠΏΠ΅ (Β«ΠΏΠ°Π»ΡŒΠΏΠ°Ρ†ΠΈΠΈΒ») ΡƒΒ 50%Β ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² (Π”Π˜Β 30βˆ’17%; 10 наблюдСний) для ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΡΡ‚ΠΈ манипуляции ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄Π²Π° мСста ΠΊΠ°Π½ΡŽΠ»ΡΡ†ΠΈΠΈ ΠΈ Π±ΠΎΠ»Π΅Π΅. Π‘Ρ€Π΅Π΄ΠΈ ослоТнСний Π²ΡΡ‚Ρ€Π΅Ρ‚ΠΈΠ»ΠΈΡΡŒ Π³Π΅ΠΌΠ°Ρ‚ΠΎΠΌΡ‹, ΠΏΡ€ΠΈ этом статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠΉ связи ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ ΠΈΡ… количСства Π² Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… Π½Π΅ выявили (Ρ…ΠΈ-ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠŸΠΈΡ€ΡΠΎΠ½Π°Β =Β 2,7706, dfΒ =Β 1,Β pΒ =Β 0,09601). ВрСмя, Π·Π°Ρ‚Ρ€Π°Ρ‡Π΅Π½Π½ΠΎΠ΅ Π½Π° ΠΊΠ°Ρ‚Π΅Ρ‚Π΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡŽ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ Β«ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠ°Β», Π±Ρ‹Π»ΠΎ мСньшС, Ρ‡Π΅ΠΌ Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ Β«ΠΏΠ°Π»ΡŒΠΏΠ°Ρ†ΠΈΡΒ» (WΒ =Β 344,Β pΒ &lt;Β 0,001), ΠΈ составило 101 с (51; 144) ΠΈ 194 с (153; 311) соотвСтствСнно.Π’Ρ‹Π²ΠΎΠ΄.Β Π’ сравнСнии с Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ (ΠΏΠ°Π»ΡŒΠΏΠ°Ρ‚ΠΎΡ€Π½ΠΎΠΉ), ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΊΠ°Ρ‚Π΅Ρ‚Π΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ ΠΏΠΎΠ΄ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠ° ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Ρ‚Π°ΠΊΠΈΠΌΠΈ прСимущСствами, ΠΊΠ°ΠΊ высокая Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΡΡ‚ΠΈ ΠΊΠ°Π½ΡŽΠ»ΡΡ†ΠΈΠΈ с ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠΈ, мСньшСС Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠ΅ количСство мСст для обСспСчСния Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ доступа ΠΈ ΠΎΠ±Ρ‰Π΅Π΅ Π·Π°Ρ‚Ρ€Π°Ρ‡Π΅Π½Π½ΠΎΠ΅ Π½Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ манипуляции врСмя

    Π’Π›Π˜Π―ΠΠ˜Π• Π“Π›Π£Π‘ΠžΠšΠžΠ™ ΠΠΠ•Π‘Π’Π•Π—Π˜Π˜ НА Π’ΠžΠ—ΠΠ˜ΠšΠΠžΠ’Π•ΠΠ˜Π• ΠŸΠžΠ‘Π›Π•ΠžΠŸΠ•Π ΠΠ¦Π˜ΠžΠΠΠžΠ™ ΠšΠžΠ“ΠΠ˜Π’Π˜Π’ΠΠžΠ™ Π”Π˜Π‘Π€Π£ΠΠšΠ¦Π˜Π˜

    Get PDF
    The profound deepening of medicamentous sleep down to the burst-suppression electroencephalography pattern is used to provide medication-based protection of brain during preventive temporary clipping of the major arteries when performing surgery due to cerebral aneurysms. There is no consensus about the effect of profound suppression of electrobiological activity on the development of post-operative cognitive dysfunction. The goal: to evaluate the impact of anesthesia with the burst-suppression electroencephalography pattern on the post-operative cognitive status of the patients with no cerebral disorders. Subjects and methods. 30 patients were enrolled into the prospective randomized study, they all had surgeries due to degenerative spinal diseases. All patients were divided into two groups. Anesthesia in the main group (Group 1) differed from the one in the control group (Group 2); it included administration of propofol till achieving suppression of the electrobiological activity of burst-suppression electroencephalography pattern during 15 minutes. Prior to the surgery and in 4 days after it, all patients had neuro-psychological tests using Montreal Cognitive Assessment (MoCA), Frontal Assessment Battery (FAB) and numbers memorization techniques (NMT). Results. When testing in 4 days after surgery, results in the patients from Group 1 did not differ from pre-operative results of MoCA (Mebefore =Β 28, Meafter= 28, Z = 0.714, p = 0.476), FAB (Mebefore = 18, Meafter = 18, Z = 0.592, p = 0.554), memorization of numbers in the direct order (Mebefore = 18, Meafter = 18, Z = 0.178, p = 0.859) and in the reverse order (Mebefore = 18, Meafter = 18, Z = 0.548, p = 0.583). The results of the post-operative testing in Group 2 were compatible with pre-operative results of (Mebefore = 18, Meafter = 18, Z = 0.459, p = 0.646), FAB (Mebefore = 18, Meafter = 18, Z =Β 1.348, p =Β 0.178), memorization of numbers in the direct order (Mebefore = 18, Meafter = 18, Z = 0.21, p = 0.843) and in the reverse order (Mebefore =Β 18, Meafter =Β 18, Z = 0.809, p = 0.418). None of the tests detected significant differences between the Groups (U = 88, p = 0.319, Z = 0.995 for MoCA; UΒ =Β 102.5, p = 0.644, Z = 0.394 for FAB; U = 92.0, p = 0.407, Z = -0.829 for memorization of numbers in the direct order, and U = 33.5, p = 0.62, ZΒ =Β 0.572 for memorization of numbers in the reverse order). Conclusion. Anesthesia with burst-suppression electroencephalography pattern as a model of medication-based cerebral protection during temporary clipping of the major arteries does not cause the deterioration of cognitive status in the patients who had no cerebral pathology initially. Для ΠΌΠ΅Π΄ΠΈΠΊΠ°ΠΌΠ΅Π½Ρ‚ΠΎΠ·Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΏΡ€Π΅Π²Π΅Π½Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ клипирования ΠΌΠ°Π³ΠΈΡΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΉ ΠΏΡ€ΠΈ опСрациях ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Ρ†Π΅Ρ€Π΅Π±Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Π΅Π²Ρ€ΠΈΠ·ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΡƒΠ³Π»ΡƒΠ±Π»Π΅Π½ΠΈΠ΅ ΠΌΠ΅Π΄ΠΈΠΊΠ°ΠΌΠ΅Π½Ρ‚ΠΎΠ·Π½ΠΎΠ³ΠΎ сна Π΄ΠΎ появлСния Π½Π° элСктроэнцСфалограммС ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½Π° Β«Π²ΡΠΏΡ‹ΡˆΠΊΠ° β€’ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅Β». НСт Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ мнСния Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ влияния Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ угнСтСния биоэлСктричСской активности Π½Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ послСопСрационной ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½ΠΎΠΉ дисфункции. ЦСль: ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ влияниС анСстСзии с элСктроэнцСфалографичСским ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠΌ Β«Π²ΡΠΏΡ‹ΡˆΠΊΠ° β€’ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅Β» Π½Π° послСопСрационный ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½Ρ‹ΠΉ статус ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π±Π΅Π· ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ проспСктивном Ρ€Π°Π½Π΄ΠΎΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ исслСдовании участвовали 30 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠ»ΠΈ хирургичСскоС Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Π΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½ΠΈΠΊΠ°. ВсС ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹. АнСстСзия Π² основной Π³Ρ€ΡƒΠΏΠΏΠ΅ (1-я Π³Ρ€ΡƒΠΏΠΏΠ°) ΠΎΡ‚Π»ΠΈΡ‡Π°Π»Π°ΡΡŒ ΠΎΡ‚ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ (2-я Π³Ρ€ΡƒΠΏΠΏΠ°) Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΎΠΏΠΎΡ„ΠΎΠ»Π° Π΄ΠΎ появлСния Π² биоэлСктричСской активности Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½Π° Β«Π²ΡΠΏΡ‹ΡˆΠΊΠ° β€’ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅Β» Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 15 ΠΌΠΈΠ½. ΠŸΠ΅Ρ€Π΅Π΄ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΈ Π½Π° 4-Π΅ сут послС Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° всСм ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ нСйропсихологичСскоС тСстированиС с использованиСм ΠœΠΎΠ½Ρ€Π΅Π°Π»ΡŒΡΠΊΠΎΠΉ ΡˆΠΊΠ°Π»Ρ‹ ΠΎΡ†Π΅Π½ΠΊΠΈ психичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ (MoCA), Π±Π°Ρ‚Π°Ρ€Π΅ΠΈ тСстов для ΠΎΡ†Π΅Π½ΠΊΠΈ Π»ΠΎΠ±Π½ΠΎΠΉ дисфункции (FAB) ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ запоминания Ρ†ΠΈΡ„Ρ€. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΈ обслСдовании Π½Π° 4-Π΅ сут послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π² 1-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π½Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°Π»ΠΈΡΡŒ ΠΎΡ‚ ΠΏΡ€Π΅Π΄ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ тСстов MoCA (MeΠ΄ΠΎ = 28, MeпослС = 28, Z = 0,714, p = 0,476), FAB (MeΠ΄ΠΎ = 18, MeпослС = 18, Z = 0,592, p = 0,554), запоминания Ρ†ΠΈΡ„Ρ€ Π² прямом (MeΠ΄ΠΎ = 18, MeпослС = 18, Z = 0,178, p = 0,859) ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ порядкС (MeΠ΄ΠΎ = 18, MeпослС = 18, Z = 0,548, p = 0,583). Π’ΠΎ 2-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ послСопСрационного обслСдования Π±Ρ‹Π»ΠΈ сопоставимы с ΠΏΡ€Π΅Π΄ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ тСстов MoCA (MeΠ΄ΠΎ = 18, MeпослС = 18, ZΒ =Β 0,459, p = 0,646), FAB (MeΠ΄ΠΎ = 18, MeпослС = 18, Z = 1,348, p = 0,178), запоминания Ρ†ΠΈΡ„Ρ€ Π² прямом (MeΠ΄ΠΎ = 18, MeпослС = 18, Z = 0,21, p = 0,843) ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ порядкС (MeΠ΄ΠΎ = 18, MeпослС = 18, Z = 0,809, p = 0,418). ΠœΠ΅ΠΆΠ΄Ρƒ 1-ΠΉ ΠΈ 2-ΠΉ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠΉ Π½Π΅ выявлСно Π½ΠΈ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ (U = 88, p = 0,319, Z = 0,995 для MoCA; U = 102,5, p = 0,644, Z = 0,394 для FAB; U = 92,0, p = 0,407, Z = -0,829 для запоминания Π² прямом ΠΈ U = 33,5, p = 0,62, Z = 0,572 для запоминания Π² ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ порядкС). Π’Ρ‹Π²ΠΎΠ΄. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ анСстСзии с элСктроэнцСфалографичСским ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠΌ Β«Π²ΡΠΏΡ‹ΡˆΠΊΠ° β€’ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅Β» ΠΊΠ°ΠΊ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΌΠ΅Π΄ΠΈΠΊΠ°ΠΌΠ΅Π½Ρ‚ΠΎΠ·Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΌΠΎΠ·Π³Π° Π½Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ клипирования ΠΌΠ°Π³ΠΈΡΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΉ Π½Π΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΡ…ΡƒΠ΄ΡˆΠ΅Π½ΠΈΡŽ ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ статуса ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π±Π΅Π· исходной ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°.
    • …
    corecore