3,934 research outputs found

    The paradox of the clumps mathematically explained

    Get PDF
    The lumpy distribution of species along a continuous one-dimensional niche axis recently found by Scheffer and van Nes (Scheffer and van Ness 2006) is explained mathematically. We show that it emerges simply from the eigenvalue and eigenvectors of the community matrix. Both the transient patterns—lumps and gaps between them—as well as the asymptotic equilibrium are explained. If the species are evenly distributed along the niche axis, the emergence of these patterns can be demonstrated analytically. The more general case, of randomly distributed species, shows only slight deviations and is illustrated by numerical simulation. This is a robust result whenever the finiteness of the niche is taken into account: it can be extended to different analytic dependence of the interaction coefficients with the distance on the niche axis (i.e., different kernel interactions), different boundary conditions, etc. We also found that there is a critical value both for the width of the species distribution s and the number of species n below which the clusterization disappear

    Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations

    Full text link
    We present new interior regularity criteria for suitable weak solutions of the 3-D Navier-Stokes equations: a suitable weak solution is regular near an interior point zz if either the scaled Lx,tp,qL^{p,q}_{x,t}-norm of the velocity with 3/p+2/q23/p+2/q\leq 2, 1q1\leq q\leq \infty, or the Lx,tp,qL^{p,q}_{x,t}-norm of the vorticity with 3/p+2/q33/p+2/q\leq 3, 1q<1 \leq q < \infty, or the Lx,tp,qL^{p,q}_{x,t}-norm of the gradient of the vorticity with 3/p+2/q43/p+2/q\leq 4, 1q1 \leq q, 1p1 \leq p, is sufficiently small near zz

    A geometric condition implying energy equality for solutions of 3D Navier-Stokes equation

    Full text link
    We prove that every weak solution uu to the 3D Navier-Stokes equation that belongs to the class L3L9/2L^3L^{9/2} and \n u belongs to L3L9/5L^3L^{9/5} localy away from a 1/2-H\"{o}lder continuous curve in time satisfies the generalized energy equality. In particular every such solution is suitable.Comment: 10 page

    Partial Regularity of solutions to the Four-dimensional Navier-Stokes equations at the first blow-up time

    Full text link
    The solutions of incompressible Navier-Stokes equations in four spatial dimensions are considered. We prove that the two-dimensional Hausdorff measure of the set of singular points at the first blow-up time is equal to zero.Comment: 19 pages, a comment regarding five or higher dimensional case is added in Remark 1.3. accepted by Comm. Math. Phy

    Spatial correlation as leading indicator of catastrophic shifts

    Get PDF
    Generic early-warning signals such as increased autocorrelation and variance have been demonstrated in time-series of systems with alternative stable states approaching a critical transition. However, lag times for the detection of such leading indicators are typically long. Here, we show that increased spatial correlation may serve as a more powerful early-warning signal in systems consisting of many coupled units. We first show why from the universal phenomenon of critical slowing down, spatial correlation should be expected to increase in the vicinity of bifurcations. Subsequently, we explore the applicability of this idea in spatially explicit ecosystem models that can have alternative attractors. The analysis reveals that as a control parameter slowly pushes the system towards the threshold, spatial correlation between neighboring cells tends to increase well before the transition. We show that such increase in spatial correlation represents a better early-warning signal than indicators derived from time-series provided that there is sufficient spatial heterogeneity and connectivity in the syste

    Biaxial Testing of Elastomers: Experimental Setup, Measurement and Experimental Optimisation of Specimen’s Shape

    Get PDF
    The present article deals with the setup and the control of a biaxial tension test device for characterising the material properties of elastomers. After a short introduction into the experimental setup a brief explanation of the benefits of a biaxial tension test is given. Furthermore the analysis of this test will be discussed. Therefore, the used optical field measurement by digital image correlation for analysing the strains is shortly introduced to the reader. Additionally, the basic concepts of the calculation of an inverse boundary problem for identifying the material’s parameters are imposed. However the main focus is laid on the experimental optimisation of the specimen’s geometry, whereupon a nearly hyperelastic, incompressible silicone is used to get the experimental results. The resulting geometry will be specially fitted to the requirements of elastomers. The tested geometries and the evaluation of the experiments will be explained as well as the resulting quality factor for the suitability of a specimen’s shape. After all, a short validation of the foregoing considerations will be presented

    Climbing Escher's stairs: a way to approximate stability landscapes in multidimensional systems

    Full text link
    Stability landscapes are useful for understanding the properties of dynamical systems. These landscapes can be calculated from the system's dynamical equations using the physical concept of scalar potential. Unfortunately, for most biological systems with two or more state variables such potentials do not exist. Here we use an analogy with art to provide an accessible explanation of why this happens. Additionally, we introduce a numerical method for decomposing differential equations into two terms: the gradient term that has an associated potential, and the non-gradient term that lacks it. In regions of the state space where the magnitude of the non-gradient term is small compared to the gradient part, we use the gradient term to approximate the potential as quasi-potential. The non-gradient to gradient ratio can be used to estimate the local error introduced by our approximation. Both the algorithm and a ready-to-use implementation in the form of an R package are provided

    Independent analysis of the orbits of Pioneer 10 and 11

    Full text link
    Independently developed orbit determination software is used to analyze the orbits of Pioneer 10 and 11 using Doppler data. The analysis takes into account the gravitational fields of the Sun and planets using the latest JPL ephemerides, accurate station locations, signal propagation delays (e.g., the Shapiro delay, atmospheric effects), the spacecrafts' spin, and maneuvers. New to this analysis is the ability to utilize telemetry data for spin, maneuvers, and other on-board systematic effects. Using data that was analyzed in prior JPL studies, the anomalous acceleration of the two spacecraft is confirmed. We are also able to put limits on any secondary acceleration (i.e., jerk) terms. The tools that were developed will be used in the upcoming analysis of recently recovered Pioneer 10 and 11 Doppler data files.Comment: 22 pages, 5 figures; accepted for publication in IJMP
    corecore