6 research outputs found

    MYD88 mutations identify a molecular subgroup of diffuse large B-cell lymphoma with an unfavorable prognosis

    Get PDF
    The 2016 World Health Organization classification defines diffuse large B-cell lymphoma (DLBCL) subtypes based on Epstein-Barr virus (EBV) infection and oncogenic rearrangements of MYC/BCL2/BCL6 as drivers of lymphomagenesis. A subset of DLBCL, however, is characterized by activating mutations in MYD88/CD79B. We investigated whether MYD88/CD79B mutations could improve the classification and prognostication of DLBCL. In 250 primary DLBCL, MYD88/CD79B mutations were identified by allele-specific polymerase chain reaction or next-generationsequencing, MYC/BCL2/BCL6 rearrangements were analyzed by fluorescence in situ hybridization, and EBV was studied by EBV-encoded RNA in situ hybridization. Associations of molecular features with clinicopathologic characteristics, outcome, and prognosis according to the International Prognostic Index (IPI) were investigated. MYD88 and CD79B mutations were identified in 29.6% and 12.3%, MYC, BCL2, and BCL6 rearrangements in 10.6%, 13.6%, and 20.3%, and EBV in 11.7% of DLBCL, respectively. Prominent mutual exclusivity between EBV positivity, rearrangements, and MYD88/CD79B mutations established the value of molecular markers for the recognition of biologically distinct DLBCL subtypes. MYD88-mutated DLBCL had a significantly inferior 5-year overall survival than wild-type MYD88 DLBCL (log-rank; P=0.019). DLBCL without any of the studied aberrations had superior overall survival compared to cases carrying .1 aberrancy (log-rank; P=0.010). MYD88 mutations retained their adverse prognostic impact upon adjustment for other genetic and clinical variables by multivariable analysis and improved the prognostic performance of the IPI. This study demonstrates the clinical utility of defining MYD88-mutated DLBCL as a distinct molecular subtype with adverse prognosis. Our data call for sequence analysis of MYD88 in routine diagnostics of DLBCL to optimize classification and prognostication, and to guide the development of improved treatment strategies

    B cells in cluster or in a scattered pattern do not correlate with clinical outcome of renal allograft rejection

    No full text
    BACKGROUND: The role of CD20+ B cells in renal allograft rejection has been reappreciated. Importantly, recent studies suggest a relation between CD20+ B cell aggregates and poorer clinical outcome. In the present study, we attempted to confirm these early reports in a tightly controlled patient population and to differentiate between scattered infiltrates and clusters of B cells. METHODS: Fifty-four biopsies from renal transplant recipients with acute rejection were immunostained for CD20, CD3, and C4d. All patients received similar immunosuppressive therapy. Response to therapy was defined as a decrease in serum creatinine level within 2 weeks to 125% or less of the value before the clinically diagnosed episode of allograft rejection. Late clinical outcome was defined in creatinine clearance between 8 and 12 months after the episode of acute rejection or in graft failure. RESULTS AND CONCLUSION: A significant correlation was observed between interstitial infiltrates of CD20+ cells and CD3+ cells (r=0.720, P <0.001) suggesting that if B-cell infiltrates are present during rejection, they occur with T-cell infiltrates in a concurrent fashion. In contrast to previous reports, no relation was found between the number of CD20+ cells, in aggregates or in a scattered interstitial pattern, and response to conventional therapy. Remarkably, CD3+T cell aggregates did predict a favorable renal outcom

    MYD88 mutations identify a molecular subgroup of diffuse large B-cell lymphoma with an unfavorable prognosis

    No full text
    The 2016 World Health Organization classification defines diffuse large B-cell lymphoma (DLBCL) subtypes based on Epstein-Barr virus (EBV) infection and oncogenic rearrangements of MYC/BCL2/BCL6 as drivers of lymphomagenesis. A subset of DLBCL, however, is characterized by activating mutations in MYD88/CD79B We investigated whether MYD88/CD79B mutations could improve the classification and prognostication of DLBCL. In 250 primary DLBCL, MYD88/CD79B mutations were identified by allele-specific polymerase chain reaction or next-generation-sequencing, MYC/BCL2/BCL6 rearrangements were analyzed by fluorescence in situ hybridization, and EBV was studied by EBV-encoded RNA in situ hybridization. Associations of molecular features with clinicopathologic characteristics, outcome, and prognosis according to the International Prognostic Index (IPI) were investigated. MYD88 and CD79B mutations were identified in 29.6% and 12.3%, MYC, BCL2, and BCL6 rearrangements in 10.6%, 13.6%, and 20.3%, and EBV in 11.7% of DLBCL, respectively. Prominent mutual exclusivity between EBV positivity, rearrangements, and MYD88/CD79B mutations established the value of molecular markers for the recognition of biologically distinct DLBCL subtypes. MYD88-mutated DLBCL had a significantly inferior 5-year overall survival than wild-type MYD88 DLBCL (log-rank; P=0.019). DLBCL without any of the studied aberrations had superior overall survival compared to cases carrying ≥1 aberrancy (log-rank; P=0.010). MYD88 mutations retained their adverse prognostic impact upon adjustment for other genetic and clinical variables by multivariable analysis and improved the prognostic performance of the IPI. This study demonstrates the clinical utility of defining MYD88-mutated DLBCL as a distinct molecular subtype with adverse prognosis. Our data call for sequence analysis of MYD88 in routine diagnostics of DLBCL to optimize classification and prognostication, and to guide the development of improved treatment strategies
    corecore