12 research outputs found

    Glucose versus fructose metabolism in the liver measured with deuterium metabolic imaging

    Get PDF
    Chronic intake of high amounts of fructose has been linked to the development of metabolic disorders, which has been attributed to the almost complete clearance of fructose by the liver. However, direct measurement of hepatic fructose uptake is complicated by the fact that the portal vein is difficult to access. Here we present a new, non-invasive method to measure hepatic fructose uptake and metabolism with the use of deuterium metabolic imaging (DMI) upon administration of [6,6’-2H2]fructose. Using both [6,6’-2H2]glucose and [6,6’-2H2]fructose, we determined differences in the uptake and metabolism of glucose and fructose in the mouse liver with dynamic DMI. The deuterated compounds were administered either by fast intravenous (IV) bolus injection or by slow IV infusion. Directly after IV bolus injection of [6,6’-2H2]fructose, a more than two-fold higher initial uptake and subsequent 2.5-fold faster decay of fructose was observed in the mouse liver as compared to that of glucose after bolus injection of [6,6’-2H2]glucose. In contrast, after slow IV infusion of fructose, the 2H fructose/glucose signal maximum in liver spectra was lower compared to the 2H glucose signal maximum after slow infusion of glucose. With both bolus injection and slow infusion protocols, deuterium labeling of water was faster with fructose than with glucose. These observations are in line with a higher extraction and faster turnover of fructose in the liver, as compared with glucose. DMI with [6,6’-2H2]glucose and [6,6’-2H2]fructose could potentially contribute to a better understanding of healthy human liver metabolism and aberrations in metabolic diseases

    Validation of In Vivo Nodal Assessment of Solid Malignancies with USPIO-Enhanced MRI: A Workflow Protocol

    Get PDF
    Background: In various cancer types, the first step towards extended metastatic disease is the presence of lymph node metastases. Imaging methods with sufficient diagnostic accuracy are required to personalize treatment. Lymph node metastases can be detected with ultrasmall superpara-magnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI), but this method needs validation. Here, a workflow is presented, which is designed to compare MRI-visible lymph nodes on a node-to-node basis with histopathology. Methods: In patients with prostate, rectal, periampullary, esophageal, and head-and-neck cancer, in vivo USPIO-enhanced MRI was performed to detect lymph nodes suspicious of harboring metastases. After lymphadenectomy, but before histopathological assessment, a 7 Tesla preclinical ex vivo MRI of the surgical specimen was performed, and in vivo MR images were radiologically matched to ex vivo MR images. Lymph nodes were annotated on the ex vivo MRI for an MR-guided pathological examination of the specimens. Results: Matching lymph nodes of ex vivo MRI to pathology was feasible in all cancer types. The annotated ex vivo MR images enabled a comparison between USPIO-enhanced in vivo MRI and histopathology, which allowed for analyses on a nodal, or at least on a nodal station, basis. Conclusions: A workflow was developed to validate in vivo USPIO-enhanced MRI with histopathology. Guiding the pathologist towards lymph nodes in the resection specimens during histopathological work-up allowed for the analysis at a nodal basis, or at least nodal station basis, of in vivo suspicious lymph nodes with corresponding histopathology, providing direct information for validation of in vivo USPIO-enhanced, MRI-detected lymph nodes

    A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF
    Task-free functional connectivity in animal models provides an experimental framework to examine connectivity phenomena under controlled conditions and allows for comparisons with data modalities collected under invasive or terminal procedures. Currently, animal acquisitions are performed with varying protocols and analyses that hamper result comparison and integration. Here we introduce StandardRat, a consensus rat functional magnetic resonance imaging acquisition protocol tested across 20 centers. To develop this protocol with optimized acquisition and processing parameters, we initially aggregated 65 functional imaging datasets acquired from rats across 46 centers. We developed a reproducible pipeline for analyzing rat data acquired with diverse protocols and determined experimental and processing parameters associated with the robust detection of functional connectivity across centers. We show that the standardized protocol enhances biologically plausible functional connectivity patterns relative to previous acquisitions. The protocol and processing pipeline described here is openly shared with the neuroimaging community to promote interoperability and cooperation toward tackling the most important challenges in neuroscience

    Dynamic nuclear polarization of silicon carbide micro- and nanoparticles

    No full text
    Two dominant crystalline phases of silicon carbide (SiC): α-SiC and ÎČ-SiC, differing in size and chemical composition, were investigated regarding their potential for dynamic nuclear polarization (DNP). 29Si nuclei in α-SiC micro- and nanoparticles with sizes ranging from 650 nm to 2.2 ÎŒm and minimal oxidation were successfully hyperpolarized without the use of free radicals, while ÎČ-SiC samples did not display appreciable degrees of polarization under the same polarization conditions. Long T1 relaxation times in α-SiC of up to 1600 s (∌27 min) were recorded for the 29Si nuclei after 1 h of polarization at a temperature of 4 K. Interestingly, these promising α-SiC particles allowed for direct hyperpolarization of both 29Si and 13C nuclei, resulting in comparably strong signal amplifications. Moreover, the T1 relaxation time of 13C nuclei in 750 nm-sized α-SiC particles was over 33 min, which far exceeds T1 times of conventional 13C DNP probes with values in the order of 1-2 min. The present work demonstrates the feasibility of DNP on SiC micro- and nanoparticles and highlights their potential as hyperpolarized magnetic resonance imaging agents

    Utility of T2-weighted MRI texture analysis in assessment of peripheral zone prostate cancer aggressiveness: a single-arm, multicenter study

    No full text
    T2-weighted (T2W) MRI provides high spatial resolution and tissue-specific contrast, but it is predominantly used for qualitative evaluation of prostate anatomy and anomalies. This retrospective multicenter study evaluated the potential of T2W image-derived textural features for quantitative assessment of peripheral zone prostate cancer (PCa) aggressiveness. A standardized preoperative multiparametric MRI was performed on 87 PCa patients across 6 institutions. T2W intensity and apparent diffusion coefficient (ADC) histogram, and T2W textural features were computed from tumor volumes annotated based on whole-mount histology. Spearman correlations were used to evaluate association between textural features and PCa grade groups (i.e. 1–5). Feature utility in differentiating and classifying low-(grade group 1) vs. intermediate/high-(grade group ≄ 2) aggressive cancers was evaluated using Mann–Whitney U-tests, and a support vector machine classifier employing “hold-one-institution-out” cross-validation scheme, respectively. Textural features indicating image homogeneity and disorder/complexity correlated significantly (p < 0.05) with PCa grade groups. In the intermediate/high-aggressive cancers, textural homogeneity and disorder/complexity were significantly lower and higher, respectively, compared to the low-aggressive cancers. The mean classification accuracy across the centers was highest for the combined ADC and T2W intensity-textural features (84%) compared to ADC histogram (75%), T2W histogram (72%), T2W textural (72%) features alone or T2W histogram and texture (77%), T2W and ADC histogram (79%) combined. Texture analysis of T2W images provides quantitative information or features that are associated with peripheral zone PCa aggressiveness and can augment their classification

    Advanced single voxel 1 H magnetic resonance spectroscopy techniques in humans: Experts' consensus recommendations

    No full text
    Conventional proton MRS has been successfully utilized to noninvasively assess tissue biochemistry in conditions that result in large changes in metabolite levels. For more challenging applications, namely, in conditions which result in subtle metabolite changes, the limitations of vendor-provided MRS protocols are increasingly recognized, especially when used at high fields (>/=3 T) where chemical shift displacement errors, B0 and B1 inhomogeneities and limitations in the transmit B1 field become prominent. To overcome the limitations of conventional MRS protocols at 3 and 7 T, the use of advanced MRS methodology, including pulse sequences and adjustment procedures, is recommended. Specifically, the semiadiabatic LASER sequence is recommended when TE values of 25-30 ms are acceptable, and the semiadiabatic SPECIAL sequence is suggested as an alternative when shorter TE values are critical. The magnetic field B0 homogeneity should be optimized and RF pulses should be calibrated for each voxel. Unsuppressed water signal should be acquired for eddy current correction and preferably also for metabolite quantification. Metabolite and water data should be saved in single shots to facilitate phase and frequency alignment and to exclude motion-corrupted shots. Final averaged spectra should be evaluated for SNR, linewidth, water suppression efficiency and the presence of unwanted coherences. Spectra that do not fit predefined quality criteria should be excluded from further analysis. Commercially available tools to acquire all data in consistent anatomical locations are recommended for voxel prescriptions, in particular in longitudinal studies. To enable the larger MRS community to take advantage of these advanced methods, a list of resources for these advanced protocols on the major clinical platforms is provided. Finally, a set of recommendations are provided for vendors to enable development of advanced MRS on standard platforms, including implementation of advanced localization sequences, tools for quality assurance on the scanner, and tools for prospective volume tracking and dynamic linear shim corrections

    A Comprehensive Grading System for a Magnetic Sentinel Lymph Node Biopsy Procedure in Head and Neck Cancer Patients

    Get PDF
    A magnetic sentinel lymph node biopsy ((SLN)B) procedure has recently been shown feasible in oral cancer patients. However, a grading system is absent for proper identification and classification, and thus for clinical reporting. Based on data from eight complete magnetic SLNB procedures, we propose a provisional grading system. This grading system includes: (1) a qualitative five-point grading scale for MRI evaluation to describe iron uptake by LNs; (2) an ex vivo count of resected SLN with a magnetic probe to quantify iron amount; and (3) a qualitative five-point grading scale for histopathologic examination of excised magnetic SLNs. Most SLNs with iron uptake were identified and detected in level II. In this level, most variance in grading was seen for MRI and histopathology; MRI and medullar sinus were especially highly graded, and cortical sinus was mainly low graded. On average 82 ± 58 ”g iron accumulated in harvested SLNs, and there were no significant differences in injected tracer dose (22.4 mg or 11.2 mg iron). In conclusion, a first step was taken in defining a comprehensive grading system to gain more insight into the lymphatic draining system during a magnetic SLNB procedure

    Advanced single voxel \u3csup\u3e1\u3c/sup\u3eH magnetic resonance spectroscopy techniques in humans: Experts\u27 consensus recommendations

    No full text
    Conventional proton MRS has been successfully utilized to noninvasively assess tissue biochemistry in conditions that result in large changes in metabolite levels. For more challenging applications, namely, in conditions which result in subtle metabolite changes, the limitations of vendor-provided MRS protocols are increasingly recognized, especially when used at high fields (≄3 T) where chemical shift displacement errors, B0 and B1 inhomogeneities and limitations in the transmit B1 field become prominent. To overcome the limitations of conventional MRS protocols at 3 and 7 T, the use of advanced MRS methodology, including pulse sequences and adjustment procedures, is recommended. Specifically, the semiadiabatic LASER sequence is recommended when TE values of 25-30 ms are acceptable, and the semiadiabatic SPECIAL sequence is suggested as an alternative when shorter TE values are critical. The magnetic field B0 homogeneity should be optimized and RF pulses should be calibrated for each voxel. Unsuppressed water signal should be acquired for eddy current correction and preferably also for metabolite quantification. Metabolite and water data should be saved in single shots to facilitate phase and frequency alignment and to exclude motion-corrupted shots. Final averaged spectra should be evaluated for SNR, linewidth, water suppression efficiency and the presence of unwanted coherences. Spectra that do not fit predefined quality criteria should be excluded from further analysis. Commercially available tools to acquire all data in consistent anatomical locations are recommended for voxel prescriptions, in particular in longitudinal studies. To enable the larger MRS community to take advantage of these advanced methods, a list of resources for these advanced protocols on the major clinical platforms is provided. Finally, a set of recommendations are provided for vendors to enable development of advanced MRS on standard platforms, including implementation of advanced localization sequences, tools for quality assurance on the scanner, and tools for prospective volume tracking and dynamic linear shim corrections
    corecore