30 research outputs found

    Simple, Robust, and Plasticizer-Free Iodide-Selective Sensor Based on Copolymerized Triazole-Based Ionic Liquid

    Get PDF
    Novel solid-contact iodide-selective electrodes based on covalently attached 1,2,3 triazole ionic liquid (IL) were prepared and investigated in this study. Triazole-based IL moieties were synthesized using click chemistry and were further copolymerized with lauryl methacrylate via a simple one-step free radical polymerization to produce a "self-plasticized" copolymer. The mechanical properties of the copolymer are suitable for the fabrication of plasticizer-free ion-selective membrane electrodes. We demonstrate that covalently attached IL moieties provide adequate functionality to the ion-selective membrane, thus achieving a very simple, one-component sensing membrane. We also demonstrate that the presence of iodide as the counterion in the triazole moiety has direct influence on the membrane's functionality. Potentiometric experiments revealed that each electrode displays high selectivity toward iodide anions over a number of inorganic anions. Moreover, the inherent presence of the iodide in the membrane reduces the need for conditioning. The nonconditioned electrodes show strikingly similar response characteristics compared to the conditioned ones. The electrodes exhibited a near Nernstian behavior with a slope of -56.1 mV per decade across a large concentration range with lower detection limits found at approximately 6.3 × 10(-8) M or 8 ppb. These all-solid-state sensors were utilized for the selective potentiometric determination of iodide ions in artificial urine samples in the nanomolar concentration range

    Wearable technology for the real-time analysis of sweat during exercise

    Get PDF
    -Textile based sensors which can be used to measure the chemical composition of bodily fluids represents a major advancement in the area of wearable technology. BIOTEX is an EU funded project aiming to develop such sensors with a particular interest in monitoring perspiration. A textile based fluid handling system has been developed for sample collection and transport. Sodium, conductivity and pH sensors have also been developed. This paper details the integration and testing of these sensors. Results show that the developed system can collect and analyze sweat in real time during exercise and transmit this data wirelessly to a remote receive

    A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration

    Get PDF
    We report a new method for the real-time quantitative analysis of sodium in human sweat, consolidating sweat collection and analysis in a single, integrated, wearable platform. This temporal data opens up new possibilities in the study of human physiology, broadly applicable from assessing high performance athletes to monitoring Cystic Fibrosis (CF) sufferers. Our compact Sodium Sensor Belt (SSB) consists of a sodium selective Ion Selective Electrode (ISE) integrated into a platform that can be interfaced with the human body during exercise. No skin cleaning regime or sweat storage technology is required as the sweat is continually wicked from the skin to a sensing surface and from there to a storage area via a fabric pump. Our results suggest that after an initial equilibration period, a steady-state sodium plateau concentration was reached. Atomic Absorption Spectroscopy (AAS) was used as a reference method, and this has confirmed the accuracy of the new continuous monitoring approach. The steady-state concentrations observed were found to fall within ranges previously found in the literature, which further validates the approach. Daily calibration repeatability (n 1⁄4 4) was +/- 3.0% RSD and over a three month period reproducibility was +/- 12.1% RSD (n 1⁄4 56). As a further application, we attempted to monitor the sweat of Cystic Fibrosis (CF) sufferers using the same device. We observed high sodium concentrations symptomatic of CF ($60 mM Na+) for two CF patients, with no conclusive results for the remaining patients due to their limited exercising capability, and high viscosity/low volume of sweat produced

    Wearable electrochemical sensors for monitoring performance athletes

    No full text
    Nowadays, wearable sensors such as heart rate monitors and pedometers are in common use. The use of wearable systems such as these for personalized exercise regimes for health and rehabilitation is particularly interesting. In particular, the true potential of wearable chemical sensors, which for the real-time ambulatory monitoring of bodily fluids such as tears, sweat, urine and blood has not been realized. Here we present a brief introduction into the fields of ionogels and organic electrochemical transistors, and in particular, the concept of an OECT transistor incorporated into a sticking-plaster, along with a printable "ionogel" to provide a wearable biosensor platform. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE)
    corecore