326 research outputs found

    Adaptive learning rates and parallelization for stochastic, sparse, non-smooth gradients

    Full text link
    Recent work has established an empirically successful framework for adapting learning rates for stochastic gradient descent (SGD). This effectively removes all needs for tuning, while automatically reducing learning rates over time on stationary problems, and permitting learning rates to grow appropriately in non-stationary tasks. Here, we extend the idea in three directions, addressing proper minibatch parallelization, including reweighted updates for sparse or orthogonal gradients, improving robustness on non-smooth loss functions, in the process replacing the diagonal Hessian estimation procedure that may not always be available by a robust finite-difference approximation. The final algorithm integrates all these components, has linear complexity and is hyper-parameter free.Comment: Published at the First International Conference on Learning Representations (ICLR-2013). Public reviews are available at http://openreview.net/document/c14f2204-fd66-4d91-bed4-153523694041#c14f2204-fd66-4d91-bed4-15352369404

    No More Pesky Learning Rates

    Full text link
    The performance of stochastic gradient descent (SGD) depends critically on how learning rates are tuned and decreased over time. We propose a method to automatically adjust multiple learning rates so as to minimize the expected error at any one time. The method relies on local gradient variations across samples. In our approach, learning rates can increase as well as decrease, making it suitable for non-stationary problems. Using a number of convex and non-convex learning tasks, we show that the resulting algorithm matches the performance of SGD or other adaptive approaches with their best settings obtained through systematic search, and effectively removes the need for learning rate tuning

    Microplastic Abundance across Aquatic Habitats in Lake Michigan Tributaries

    Get PDF
    Microplastic (\u3c5mm) pollution is ubiquitous worldwide. The distribution of plastic particles in freshwater tributaries is ‘patchy’ showing an accumulation of particles in depositional zones, which have naturally occurring fine particles. Microplastics may be ‘sorted’ by density; denser particles in the sediment and less dense particles on the water’s surface. The purpose of this study is to determine the spatial distribution of microplastic by polymer type in 3 river habitats: surface water, water column, and benthic. So far in our study, we have found microplastics of all types can sink and become part of the sediment. Our next steps in the project are to complete the micro-FTIR analysis and compare our results to that of fish and macroinvertebrates at the same sites
    • …
    corecore