21 research outputs found

    Multi-center MRI prediction models: Predicting sex and illness course in first episode psychosis patients.

    Get PDF
    Structural Magnetic Resonance Imaging (MRI) studies have attempted to use brain measures obtained at the first-episode of psychosis to predict subsequent outcome, with inconsistent results. Thus, there is a real need to validate the utility of brain measures in the prediction of outcome using large datasets, from independent samples, obtained with different protocols and from different MRI scanners. This study had three main aims: 1) to investigate whether structural MRI data from multiple centers can be combined to create a machine-learning model able to predict a strong biological variable like sex; 2) to replicate our previous finding that an MRI scan obtained at first episode significantly predicts subsequent illness course in other independent datasets; and finally, 3) to test whether these datasets can be combined to generate multicenter models with better accuracy in the prediction of illness course. The multi-center sample included brain structural MRI scans from 256 males and 133 females patients with first episode psychosis, acquired in five centers: University Medical Center Utrecht (The Netherlands) (n=67); Institute of Psychiatry, Psychology and Neuroscience, London (United Kingdom) (n=97); University of SĂŁo Paulo (Brazil) (n=64); University of Cantabria, Santander (Spain) (n=107); and University of Melbourne (Australia) (n=54). All images were acquired on 1.5-Tesla scanners and all centers provided information on illness course during a follow-up period ranging 3 to 7years. We only included in the analyses of outcome prediction patients for whom illness course was categorized as either "continuous" (n=94) or "remitting" (n=118). Using structural brain scans from all centers, sex was predicted with significant accuracy (89%; p<0.001). In the single- or multi-center models, illness course could not be predicted with significant accuracy. However, when reducing heterogeneity by restricting the analyses to male patients only, classification accuracy improved in some samples. This study provides proof of concept that combining multi-center MRI data to create a well performing classification model is possible. However, to create complex multi-center models that perform accurately, each center should contribute a sample either large or homogeneous enough to first allow accurate classification within the single-center

    Patterns of regional gray matter loss at different stages of schizophrenia: A multisite, cross-sectional VBM study in first-episode and chronic illness.

    Get PDF
    BACKGROUND: Structural brain abnormalities in schizophrenia have been repeatedly demonstrated in magnetic resonance imaging (MRI) studies, but it remains unclear whether these are static or progressive in nature. While longitudinal MRI studies have been traditionally used to assess the issue of progression of brain abnormalities in schizophrenia, information from cross-sectional neuroimaging studies directly comparing first-episode and chronic schizophrenia patients to healthy controls may also be useful to further clarify this issue. With the recent interest in multisite mega-analyses combining structural MRI data from multiple centers aiming at increased statistical power, the present multisite voxel-based morphometry (VBM) study was carried out to examine patterns of brain structural changes according to the different stages of illness and to ascertain which (if any) of such structural abnormalities would be specifically correlated to potential clinical moderators, including cumulative exposure to antipsychotics, age of onset, illness duration and overall illness severity. METHODS: We gathered a large sample of schizophrenia patients (161, being 99 chronic and 62 first-episode) and controls (151) from four previous morphometric MRI studies (1.5 T) carried out in the same geographical region of Brazil. Image processing and analyses were conducted using Statistical Parametric Mapping (SPM8) software with the diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) algorithm. Group effects on regional gray matter (GM) volumes were investigated through whole-brain voxel-wise comparisons using General Linear Model Analysis of Co-variance (ANCOVA), always including total GM volume, scan protocol, age and gender as nuisance variables. Finally, correlation analyses were performed between the aforementioned clinical moderators and regional and global brain volumes. RESULTS: First-episode schizophrenia subjects displayed subtle volumetric deficits relative to controls in a circumscribed brain regional network identified only in small volume-corrected (SVC) analyses (p < 0.05, FWE-corrected), including the insula, temporolimbic structures and striatum. Chronic schizophrenia patients, on the other hand, demonstrated an extensive pattern of regional GM volume decreases relative to controls, involving bilateral superior, inferior and orbital frontal cortices, right middle frontal cortex, bilateral anterior cingulate cortices, bilateral insulae and right superior and middle temporal cortices (p < 0.05, FWE-corrected over the whole brain). GM volumes in several of those brain regions were directly correlated with age of disease onset on SVC analyses for conjoined (first-episode and chronic) schizophrenia groups. There were also widespread foci of significant negative correlation between duration of illness and relative GM volumes, but such findings remained significant only for the right dorsolateral prefrontal cortex after accounting for the influence of age of disease onset. Finally, significant negative correlations were detected between life-time cumulative exposure to antipsychotics and total GM and white matter volumes in schizophrenia patients, but no significant relationship was found between indices of antipsychotic usage and relative GM volume in any specific brain region. CONCLUSION: The above data indicate that brain changes associated with the diagnosis of schizophrenia are more widespread in chronic schizophrenia compared to first-episode patients. Our findings also suggest that relative GM volume deficits may be greater in (presumably more severe) cases with earlier age of onset, as well as varying as a function of illness duration in specific frontal brain regions. Finally, our results highlight the potentially complex effects of the continued use of antipsychotic drugs on structural brain abnormalities in schizophrenia, as we found that cumulative doses of antipsychotics affected brain volumes globally rather than selectively on frontal-temporal regions
    corecore