99 research outputs found

    Nuclear Masses in Astrophysics

    Full text link
    Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of N and Z and the data obtained apply to a variety of physics topics. One of the most crucial questions to be addressed in mass spectrometry of unstable radionuclides is the one of understanding the processes of element formation in the Universe. To this end, accurate atomic mass values of a large number of exotic nuclei participating in nucleosynthesis are among the key input data in large-scale reaction network calculations. In this paper, a review on the latest achievements in mass spectrometry for nuclear astrophysics is given.Comment: Proceedings of the 10th Symposium on Nuclei in the Cosmos, NIC X - Mackinac Island, Michigan, USA (10 pages, 4 figures

    Explosive hydrogen burning during type I X-ray bursts

    Get PDF
    Explosive hydrogen burning in type I X-ray bursts (XRBs) comprise charged particle reactions creating isotopes with masses up to A~100. Since charged particle reactions in a stellar environment are very temperature sensitive, we use a realistic time-dependent general relativistic and self-consistent model of type I x-ray bursts to provide accurate values of the burst temperatures and densities. This allows a detailed and accurate time-dependent identification of the reaction flow from the surface layers through the convective region and the ignition region to the neutron star ocean. Using this, we determine the relative importance of specific nuclear reactions in the X-ray burst.Comment: 53 pages, 24 figures, submitted to Astrophys.

    Heating in the Accreted Neutron Star Ocean: Implications for Superburst Ignition

    Get PDF
    We perform a self-consistent calculation of the thermal structure in the crust of a superbursting neutron star. In particular, we follow the nucleosynthetic evolution of an accreted fluid element from its deposition into the atmosphere down to a depth where the electron Fermi energy is 20 MeV. We include temperature-dependent continuum electron capture rates and realistic sources of heat loss by thermal neutrino emission from the crust and core. We show that, in contrast to previous calculations, electron captures to excited states and subsequent gamma-emission significantly reduce the local heat loss due to weak-interaction neutrinos. Depending on the initial composition these reactions release up to a factor of 10 times more heat at densities < 10^{11} g/cc than obtained previously. This heating reduces the ignition depth of superbursts. In particular, it reduces the discrepancy noted by Cumming et al. between the temperatures needed for unstable 12C ignition on timescales consistent with observations and the reduction in crust temperature from Cooper pair neutrino emission.Comment: 10 pages, 11 figures, the Astrophysical Journal, in press (scheduled for v. 662). Revised from v1 in response to referee's comment

    Detection of the Second r-process Peak Element Tellurium in Metal-Poor Stars

    Get PDF
    Using near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope, we detect neutral tellurium in three metal-poor stars enriched by products of r-process nucleosynthesis, BD+17 3248, HD 108317, and HD 128279. Tellurium (Te, Z=52) is found at the second r-process peak (A=130) associated with the N=82 neutron shell closure, and it has not been detected previously in Galactic halo stars. The derived tellurium abundances match the scaled solar system r-process distribution within the uncertainties, confirming the predicted second peak r-process residuals. These results suggest that tellurium is predominantly produced in the main component of the r-process, along with the rare earth elements.Comment: Accepted for publication in the Astrophysical Journal Letters (5 pages, 2 figures

    New Detections of Arsenic, Selenium, and Other Heavy Elements in Two Metal-Poor Stars

    Get PDF
    We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to obtain new high-quality spectra covering the 1900 to 2360 Angstrom wavelength range for two metal-poor stars, HD 108317 and HD 128279. We derive abundances of Cu II, Zn II, As I, Se I, Mo II, and Cd II, which have not been detected previously in either star. Abundances derived for Ge I, Te I, Os II, and Pt I confirm those derived from lines at longer wavelengths. We also derive upper limits from the non-detection of W II, Hg II, Pb II, and Bi I. The mean [As/Fe] ratio derived from these two stars and five others in the literature is unchanged over the metallicity range -2.8 = +0.28 +/- 0.14 (std. dev. = 0.36 dex). The mean [Se/Fe] ratio derived from these two stars and six others in the literature is also constant, = +0.16 +/- 0.09 (std. dev. = 0.26 dex). The As and Se abundances are enhanced relative to a simple extrapolation of the iron-peak abundances to higher masses, suggesting that this mass region (75 < A < 82) may be the point at which a different nucleosynthetic mechanism begins to dominate the quasi-equilibrium alpha-rich freezeout of the iron peak. = +0.56 +/- 0.23 in HD 108317 and HD 128279, and we infer that lines of Cu I may not be formed in local thermodynamic equilibrium in these stars. The [Zn/Fe], [Mo/Fe], [Cd/Fe], and [Os/Fe] ratios are also derived from neutral and ionized species, and each ratio pair agrees within the mutual uncertainties, which range from 0.15 to 0.52 dex.Comment: Accepted for publication in the Astrophysical Journal. 13 pages, 10 figure
    • 

    corecore