85 research outputs found

    Perpendicular transport properties of YBa_2Cu_3O_{7-\delta}/PrBa_2Cu_3O_{7-\delta} superlattices

    Full text link
    The coupling between the superconducting planes of YBa2Cu3O{7-\delta}/ PrBa2Cu3O{7-\delta} superlattices has been measured by c-axis transport. We show that only by changing the thickness of the superconducting YBa2Cu3O{7-\delta} layers, it is possible to switch between quasi-particle and Josephson tunneling. From our data we deduce a low temperature c-axis coherence length of 0.27 nm.Comment: Presented at LT22, contains 2 pages and 2 figures. to appear in Physica

    Electron scattering states at solid surfaces calculated with realistic potentials

    Full text link
    Scattering states with LEED asymptotics are calculated for a general non-muffin tin potential, as e.g. for a pseudopotential with a suitable barrier and image potential part. The latter applies especially to the case of low lying conduction bands. The wave function is described with a reciprocal lattice representation parallel to the surface and a discretization of the real space perpendicular to the surface. The Schroedinger equation leads to a system of linear one-dimensional equations. The asymptotic boundary value problem is confined via the quantum transmitting boundary method to a finite interval. The solutions are obtained basing on a multigrid technique which yields a fast and reliable algorithm. The influence of the boundary conditions, the accuracy and the rate of convergence with several solvers are discussed. The resulting charge densities are investigated.Comment: 5 pages, 4 figures, copyright and acknowledgment added, typos etc. correcte

    Early right ventricular systolic dysfunction in patients with systemic sclerosis without pulmonary hypertension: a Doppler Tissue and Speckle Tracking echocardiography study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Isovolumetric acceleration (IVA) is a novel tissue Doppler parameter for the assessment of systolic function. The aim of this study was to evaluate IVA as an early parameter for the detection of right ventricular (RV) systolic dysfunction in patients with systemic sclerosis (SSc) without pulmonary hypertension.</p> <p>Methods</p> <p>22 patients and 22 gender- and age-matched healthy subjects underwent standard echocardiography with tissue Doppler imaging (TDI) and speckle tracking strain to assess RV function.</p> <p>Results</p> <p>Tricuspid annular plane systolic excursion (TAPSE) (23.2 ± 4.1 mm vs. 26.5 ± 2.9 mm, p < 0.006), peak myocardial systolic velocity (Sm) (11.6 ± 2.3 cm/s vs. 13.9 ± 2.7 cm/s, p = 0.005), isovolumetric contraction velocity (IVV) (10.3 ± 3 cm/s vs. 14.8 ± 3 cm/s, p < 0.001) and IVA (2.3 ± 0.4 m/s<sup>2 </sup>vs. 4.1 ± 0.8 m/s<sup>2</sup>, p < 0.001) were significant lower in the patient group. IVA was the best parameter to predict early systolic dysfunction with an area under the curve of 0.988.</p> <p>Conclusion</p> <p>IVA is a useful tool with high-predictive power to detect early right ventricular systolic impairment in patients with SSc and without pulmonary hypertension.</p

    Implementation of seven echocardiographic parameters of myocardial asynchrony to improve the long-term response rate of cardiac resynchronization therapy (CRT)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac resynchronization Therapy (CRT) is an effective therapy for chronic heart failure with beneficial hemodynamic effects leading to a reduction of morbidity and mortality. The responder rates, however, are low. There are various and contentious echocardiographic parameters of myocardial asynchrony. Patient selection by echocardiographic assessment of asynchrony is thought to improve responder rates.</p> <p>Methods</p> <p>In this small single-center pilot-study, seven established parameters of myocardial asynchrony were used to select patients for CRT: (1) interventricular electromechanical delay (IMD, cut-off ≥ 40 ms), (2) Septal-to-posterior wall motion delay (SPWMD, ≥ 130 ms), (3) maximal difference in time-to-peak velocities between any two of twelve LV segments (Ts-12 ≥ 104 ms), (4) standard deviation of time to peak myocardial velocities (Ts-12-SD, ≥ 34.4 ms), (5) difference between the septal and basal time-to-peak velocity (TDId, ≥ 60 ms), (6) left ventricular electromechanical delay (LVEMD, > 140 ms) and (7) delayed longitudinal contraction (DLC, > 2 segments).</p> <p>16 chronic heart failure patients (NYHA III–IV, LVEF < 0.35, QRS ≥ 120 ms) at least two out of seven parameters of myocardial asynchrony received cardiac resynchronization therapy (CRT-ICD). Follow-up echo examination was after 6 months. The control group was a historic group of CRT patients (n = 38) who had not been screened for echocardiographic signs of myocardial asynchrony prior to device implantation.</p> <p>Results</p> <p>Based on reverse remodeling (relative reduction of LVESV > 15%, relative increase of LVEF > 25%), the responder rate to CRT was 81.2% in patients selected for CRT according to our protocol as compared to 47.4% in the control group (p = 0.04). At baseline, there were on average 4.1 ± 1.6 positive parameters of asynchrony (follow-up: 3.7 [± 1.6] parameters positive, p = 0.52). Only the LVEMD decreased significantly after CRT (p = 0.027). The remaining parameters showed a non-significant trend towards reduction of myocardial asynchrony.</p> <p>Conclusion</p> <p>The implementation of different markers of asynchrony in the selection process for CRT improves the hemodynamic response rate to CRT.</p

    Valence band photoemission from the GaN(0001) surface

    Full text link
    A detailed investigation by one-step photoemission calculations of the GaN(0001)-(1x1) surface in comparison with recent experiments is presented in order to clarify its structural properties and electronic structure. The discussion of normal and off-normal spectra reveals through the identified surface states clear fingerprints for the applicability of a surface model proposed by Smith et al. Especially the predicted metallic bonds are confirmed. In the context of direct transitions the calculated spectra allow to determine the valence band width and to argue in favor of one of two theoretical bulk band structures. Furthermore a commonly used experimental method to fix the valence band maximum is critically tested.Comment: 8 pages, 11 eps files, submitted to PR

    Photoemission Beyond the Sudden Approximation

    Full text link
    The many-body theory of photoemission in solids is reviewed with emphasis on methods based on response theory. The classification of diagrams into loss and no-loss diagrams is discussed and related to Keldysh path-ordering book-keeping. Some new results on energy losses in valence-electron photoemission from free-electron-like metal surfaces are presented. A way to group diagrams is presented in which spectral intensities acquire a Golden-Rule-like form which guarantees positiveness. This way of regrouping should be useful also in other problems involving spectral intensities, such as the problem of improving the one-electron spectral function away from the quasiparticle peak.Comment: 18 pages, 11 figure

    Variational quantum Monte Carlo calculations for solid surfaces

    Full text link
    Quantum Monte Carlo methods have proven to predict atomic and bulk properties of light and non-light elements with high accuracy. Here we report on the first variational quantum Monte Carlo (VMC) calculations for solid surfaces. Taking the boundary condition for the simulation from a finite layer geometry, the Hamiltonian, including a nonlocal pseudopotential, is cast in a layer resolved form and evaluated with a two-dimensional Ewald summation technique. The exact cancellation of all Jellium contributions to the Hamiltonian is ensured. The many-body trial wave function consists of a Slater determinant with parameterized localized orbitals and a Jastrow factor with a common two-body term plus a new confinement term representing further variational freedom to take into account the existence of the surface. We present results for the ideal (110) surface of Galliumarsenide for different system sizes. With the optimized trial wave function, we determine some properties related to a solid surface to illustrate that VMC techniques provide standard results under full inclusion of many-body effects at solid surfaces.Comment: 9 pages with 2 figures (eps) included, Latex 2.09, uses REVTEX style, submitted to Phys. Rev.

    c-Axis tunneling in YBa2Cu3O7-\delta/PrBa2Cu3O7-\delta superlattices

    Full text link
    In this work we report c-axis conductance measurements done on a superlattice based on a stack of 2 layers YBa2Cu3O{7-\delta} and 7 layers PrBa2Cu3O{7-\delta} (2:7). We find that these quasi-2D structures show no clear superconducting coupling along the c-axis. Instead, we observe tunneling with a gap of \Delta_c=5.0\pm 0.5 meV for the direction perpendicular to the superconducting planes. The conductance spectrum show well defined quasi-periodic structures which are attributed to the superlattice structure. From this data we deduce a low temperature c-axis coherence length of \xi_c=0.24\pm 0.03 nm.Comment: 15 pages, 5 figures. To appear in Phys.Rev.

    Energetic and spatial bonding properties from angular distributions of ultraviolet photoelectrons: application to the GaAs(110) surface

    Full text link
    Angle-resolved ultraviolet photoemission spectra are interpreted by combining the energetics and spatial properties of the contributing states. One-step calculations are in excellent agreement with new azimuthal experimental data for GaAs(110). Strong variations caused by the dispersion of the surface bands permit an accurate mapping of the electronic structure. The delocalization of the valence states is discussed analogous to photoelectron diffraction. The spatial origin of the electrons is determined, and found to be strongly energy dependent, with uv excitation probing the bonding region.Comment: 5 pages, 3 figures, submitted for publicatio

    Role of Interfaces in the Proximity Effect in Anisotropic Superconductors

    Full text link
    We report measurements of the critical temperature of YBCO-Co doped YBCO Superconductor-Normal bilayer films. Depending on the morphology of the S-N interface, the coupling between S and N layers can be turned on to depress the critical temperature of S by tens of degrees, or turned down so the layers appear almost totally decoupled. This novel effect can be explained by the mechanism of quasiparticle transmission into an anisotropic superconductor.Comment: 13 pages, 3 figure
    • …
    corecore