10 research outputs found

    Four-jointed knock-out delays renal failure in an ADPKD model with kidney injury

    Get PDF
    Autosomal Dominant Polycystic Kidney Disease is characterised by the development of fluid-filled cysts in the kidneys which lead to end-stage renal disease (ESRD). In the majority of cases, the disease is caused by a mutation in the Pkd1 gene. In a previous study, we demonstrated that renal injury can accelerate cyst formation in Pkd1 knock-out (KO) mice. In that study, we found that after injury four-jointed (Fjx1), an upstream regulator of planar cell polarity and the Hippo pathway, was aberrantly expressed in Pkd1 KO mice compared to WT. Therefore, we hypothesised a role for Fjx1 in injury/repair and cyst formation. We generated single and double deletion mice for Pkd1 and Fjx1, and we induced toxic renal injury using the nephrotoxic compound 1,2-dichlorovinyl-cysteine. We confirmed that nephrotoxic injury can accelerate cyst formation in Pkd1 mutant mice. This caused Pkd1 KO mice to reach ESRD significantly faster; unexpectedly, double KO mice survived significantly longer. Cyst formation was comparable in both models, but we found significantly less fibrosis and macrophage infiltration in double KO mice. Taken together, these data suggest that Fjx1 disruption protects the cystic kidneys against kidney failure by reducing inflammation and fibrosis. Moreover, we describe, for the first time, an interesting (yet unidentified) mechanism that partially discriminates cyst growth from fibrogenesis. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland

    Endoglin haploinsufficiency attenuates radiation-induced deterioration of kidney function in mice

    Get PDF
    <p>Background and Purpose: Endoglin is a transforming growth receptor beta (TGF-beta) co-receptor, which plays a crucial role in the development of late normal tissue damage. Mice with halved endoglin levels (Eng(+/-) mice) develop less inflammation, vascular damage and fibrosis after kidney irradiation compared to their wild type littermates (Eng(+/+) mice). This study was aimed at investigating whether reduced tissue damage in Eng(+/-) mice also results in superior kidney function.</p><p>Material and Methods: Kidneys of Eng(+/+) and Eng(+/-) mice were irradiated with a single dose of 14 Gy. Functional kidney parameters and kidney histology were analysed at 20, 30 and 40 weeks after irradiation.</p><p>Results: Eng(+/-) mice displayed improved kidney parameters (haematocrit, BUN) compared to Eng(+/+) mice at 40 weeks after irradiation. Irradiation of Eng(+/+) kidneys damaged the vascular network and led to an increase in PDGFR-beta positive cells, indicative of fibrosis-promoting myofibroblasts. Compared to Eng(+/+) kidneys, vascular perfusion and number of PDGFR-beta positive cells were reduced in Eng(+/-) control mice; however, this did not further deteriorate after irradiation.</p><p>Conclusions: Taken together, we show that not only kidney morphology, but also kidney function is improved after irradiation in Eng(+/-) compared to Eng(+/+) mice. (C) 2013 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 108 (2013) 464-468</p>

    Thalidomide Ameliorates Inflammation and Vascular Injury but Aggravates Tubular Damage in the Irradiated Mouse Kidney

    Get PDF
    Purpose: The late side effects of kidney irradiation include vascular damage and fibrosis, which are promoted by an irradiation-induced inflammatory response. We therefore treated kidney-irradiated mice with the anti-inflammatory and angiogenesis-modulating drug thalidomide in an attempt to prevent the development of late normal tissue damage and radiation nephropathy in the mouse kidney. Methods and Materials: Kidneys of C57Bl/6 mice were irradiated with a single dose of 14 Gy. Starting from week 16 after irradiation, the mice were fed with thalidomide-containing chow (100 mg/kg body weight/day). Gene expression and kidney histology were analyzed at 40 weeks and blood samples at 10, 20, 30, and 40 weeks after irradiation. Results: Thalidomide improved the vascular structure and vessel perfusion after irradiation, associated with a normalization of pericyte coverage. The drug also reduced infiltration of inflammatory cells but could not suppress the development of fibrosis. Irradiation-induced changes in hematocrit and blood urea nitrogen levels were not rescued by thalidomide. Moreover, thalidomide worsened tubular damage after irradiation and also negatively affected basal tubular function. Conclusions: Thalidomide improved the inflammatory and vascular side effects of kidney irradiation but could not reverse tubular toxicity, which probably prevented preservation of kidney function. (C) 2014 Elsevier Inc

    A Randomized Phase II Study Adding Axitinib to Pemetrexed-Cisplatin in Patients with Malignant Pleural Mesothelioma: A Single-Center Trial Combining Clinical and Translational Outcomes

    No full text
    Mesothelioma often presents with a high vessel count and increased vascular growth factors levels. Interference with angiogenesis may therefore improve outcome. This study reports on clinical and translational parameters in patients treated with the small molecule tyrosine kinase inhibitor axitinib and chemotherapy. Chemonaive patients with mesothelioma were eligible. Patients received pemetrexed (500 mg/m(2) every 3 weeks) and cisplatin (75 mg/m(2) every 3 weeks) and were randomized to receive axitinib daily (two 5-mg tablets on days 2-19) or observation. Before treatment and after three cycles of chemotherapy, a thoracoscopy was performed to evaluate vascular changes. Twenty-five patients were randomized after a successful lead-in with six patients who received axitinib. Median follow-up was 45 months. In all but one patient, it was feasible to perform a second thoracoscopy. However, there was more grade 3 or 4 neutropenia leading to pneumonia in the axitinib group. The rates of partial response and stable disease in the axitinib arm were 36% and 43% compared with 18% and 73% in the chemotherapy-only arm. Median progression-free survival and overall survival (5.8 and 18.9 months versus 8.3 and 18.5 months) were not different between the two groups. Axitinib reduced vessel number and vessel immaturation. Yet, the mRNA levels of a number of vascular growth factors, their receptors, serum VEGF levels, and activation of tissue vascular endothelial growth factor receptor 2 were increased. Gene expression of platelet-derived growth factor receptor beta, fms-related tyrosine kinase 1, and fms-related tyrosine kinase 4 even correlated with outcome. Axitinib was well tolerated in combination with cisplatin and pemetrexed. Despite the lack of a clinical benefit, axitinib reduced angiogenesis. Whether changes in differentially expressed growth factors in tissue and serum may serve as a biomarker needs further investigatio

    Endoglin Is an Important Mediator in the Final Common Pathway of Chronic Kidney Disease to End-Stage Renal Disease

    No full text
    Chronic kidney disease (CKD) is a slow-developing, progressive deterioration of renal function. The final common pathway in the pathophysiology of CKD involves glomerular sclerosis, tubular atrophy and interstitial fibrosis. Transforming growth factor-beta (TGF-β) stimulates the differentiation of fibroblasts towards myofibroblasts and the production of extracellular matrix (ECM) molecules, and thereby interstitial fibrosis. It has been shown that endoglin (ENG, CD105), primarily expressed in endothelial cells and fibroblasts, can function as a co-receptor of TGF signaling. In several human organs, endoglin tends to be upregulated when chronic damage and fibrosis is present. We hypothesize that endoglin is upregulated in renal interstitial fibrosis and plays a role in the progression of CKD. We first measured renal endoglin expression in biopsy samples obtained from patients with different types of CKD, i.e., IgA nephropathy, focal segmental glomerulosclerosis (FSGS), diabetic nephropathy (DN) and patients with chronic allograft dysfunction (CAD). We showed that endoglin is upregulated in CAD patients (p p p p ACTA2, CCN2 and SERPINE1 mRNA response (p COL1A1) and fibronectin (FN1) (p < 0.05). Our results suggest that endoglin is an important mediator in the final common pathway of CKD and could be used as a possible new therapeutic target to counteract the progression towards end-stage renal disease (ESRD)

    Reducing YAP expression in Pkd1

    No full text
    The Hippo pathway is a highly conserved signalling route involved in organ size regulation. The final effectors of this pathway are two transcriptional coactivators, yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (WWTR1 or TAZ). Previously, we showed aberrant activation of the Hippo pathway in autosomal-dominant polycystic kidney disease (ADPKD), suggesting that YAP/TAZ might play a role in disease progression. Using antisense oligonucleotides (ASOs) in a mouse model for ADPKD, we efficiently down-regulatedYaplevels in the kidneys. However, we did not see any effect on cyst formation or growth. Moreover, the expression of YAP/TAZ downstream targets was not changed, while WNT and TGF-beta pathways' downstream targetsMyc,Acta2andVimwere more expressed afterYapknockdown. Overall, our data indicate that reducing YAP levels is not a viable strategy to modulate PKD progression.Functional Genomics of Systemic Disorder

    Analysis of the genomic architecture of a complex trait locus in hypertensive rat models links <i>Tmem63c</i> to kidney damage

    Get PDF
    Unraveling the genetic susceptibility of complex diseases such as chronic kidney disease remains challenging. Here, we used inbred rat models of kidney damage associated with elevated blood pressure for the comprehensive analysis of a major albuminuria susceptibility locus detected in these models. We characterized its genomic architecture by congenic substitution mapping, targeted next generation sequencing, and compartment-specific RNA sequencing analysis in isolated glomeruli. This led to prioritization of transmembrane protein Tmem63c as a novel potential target. Tmem63c is differentially expressed in glomeruli of allele-specific rat models during onset of albuminuria. Patients with focal segmental glomerulosclerosis exhibited specific TMEM63C loss in podocytes. Functional analysis in zebrafish revealed a role for tmem63c in mediating the glomerular filtration barrier function. Our data demonstrate that integrative analysis of the genomic architecture of a complex trait locus is a powerful tool for identification of new targets such as Tmem63c for further translational investigation
    corecore