68 research outputs found

    Anisotropic Strong Coupling Calculation of the Local Electromagnetic Response of High-Tc Superconductors

    Full text link
    The electromagnetic response of the CuO2-planes is calculated within a strong coupling theory using model tight binding bands and momentum dependent pairing interactions representing spin fluctuations and phonon exchange. The superconducting state resulting from these interactions has d-wave symmetry. With phonon exchange included the order parameter amplitude grows rapidly below Tc at elevated frequencies which leads to improved agreement with the observed temperature dependence of the penetration depth. Good agreement between theory and experiment can only be achieved if it is assumed that the strength of the quasiparticle interaction decreases with temperature in the superconducting state. The amount of this reduction depends sensitively on the momentum dependence of the interactions, the energy dispersion and the position of the Fermi line.Comment: 3 pages, LaTex, to be published in J.Phys.Chem.Solids, 1997, SNS Conf., Cape Co

    Ultrasonic attenuation in magnetic fields for superconducting states with line nodes in Sr2RuO4

    Full text link
    We calculate the ultrasonic attenuation in magnetic fields for superconducting states with line nodes vertical or horizontal relative to the RuO_2 planes. This theory, which is valid for fields near Hc2 and not too low temperatures, takes into account the effects of supercurrent flow and Andreev scattering by the Abrikosov vortex lattice. For rotating in-plane field H(theta) the attenuation alpha(theta)exhibits variations of fourfold symmetry in the rotation angle theta. In the case of vertical nodes, the transverse T100 sound mode yields the weakest(linear)H and T dependence of alpha, while the longitudinal L100 mode yields a stronger (quadratic) H and T dependence. This is in strong contrast to the case of horizontal line nodes where alpha is the same for the T100 and L100 modes (apart from a shift of pi/4 in field direction) and is roughly a quadratic function of H and T. Thus we conclude that measurements of alpha in in-plane magnetic fields for different in-plane sound modes may be an important tool for probing the nodal structure of the gap in Sr_2RuO_4.Comment: 5 pages, 6 figures, replaced in non-preprint form, to appear in Phys. Rev.

    Thermal Conductivity near H_c2 for spin-triplet superconducting States with line nodes in Sr_2RuO_4

    Full text link
    We calculate the thermal conductivity kappa in magnetic fields near H_c2 for spin-triplet superconducting states with line nodes vertical and horizontal relative to the RuO_2-planes. The method for calculating the Green's functions takes into account the spatial variation of the order parameter and superconducting flow for the Abrikosov vortex lattice. For in-plane magnetic field we obtain variations of the in-plane kappa with two-fold symmetry as a function of rotation angle where the minima and maxima occur for field directions parallel and perpendicular to the heat flow. The amplitude of the variation decreases with increasing impurity scattering and temperature. At higher temperatures the minima and maxima of the variation are interchanged. Since the results for vertical and horizontal line nodes are almost the same we cannot say which of the two pairing models is more compatible with recent measurements of kappa in Sr_2RuO_4. The observed four-fold modulation of kappa in YBa_2Cu_3O_(7-\delta) is obtained for d-wave pairing by taking into account the particular shape of the Fermi surface and the finite temperature effect. The results for kappa for the f-wave pairing state with horizontal line nodes disagree in some respects with the measurements on UPt_3.Comment: 8 pages, 6 figures. To be published in Phys. Rev.

    Comment on "c-axis Josephson tunneling in Dx2−y2D_{x^2-y^2}-wave superconductors''

    Full text link
    This comment points out that the recent paper by Maki and Haas [Phys. Rev. B {\bf 67}, 020510 (2003)] is completely wrong.Comment: 1 page, submittted to Phys. Rev.

    Field dependence of the vortex structure in chiral p-wave superconductors

    Full text link
    To investigate the different vortex structure between two chiral pairing p_x +(-) i p_y, we calculate the pair potential, the internal field, the local density of states, and free energy in the vortex lattice state based on the quasiclassical Eilenberger theory, and analyze the magnetic field dependence. The induced opposite chiral component of the pair potential plays an important role in the vortex structure. It also produces H^{1/2}-behavior of the zero-energy density of states at higher field. These results are helpful when we understand the vortex states in Sr2RuO4.Comment: 11 pages, 10 figures, to be published in Phys. Rev.

    Microwave Surface Impedance of YBCO:123 crystals: Experiment and comparison to a d-wave model

    Full text link
    We present measurements of the microwave surface resistance Rs and the penetration depth lambda of YBCO:123 crystals. At low T obeys lambda(T) a polynomial behavior, while Rs displays a characteristic non-monotonic T-dependence. A detailed comparison of the experimental data is made to a model of d-wave superconductivity which includes both elastic and inelastic scattering. While the model reproduces the general features of the experimental data, three aspects of the parameters needed are worth noting. The elastic scattering rate required to fit the data is much smaller than measured from the normal state, the scattering phase shifts have to be close to pi/2 and a strong coupling value of the gap parameter 2\Delta(0)/kTc = 6 is needed. On the experimental side the uncertainties regarding the material parameters lambda(0) and Rs,res(0) further complicate a quantitative comparison. For one sample does Rs,res(0) agree with the intrinsic value which results from the d-wave model.Comment: uuencoded tar.Z, 11 pages with 5 figures, used style files: elsart and graphicx, PS-file available at http://sagar.cas.neu.edu/preprints.htm

    Uric Acid Accumulation in an Arabidopsis

    Full text link

    Reduction of Pauli paramagnetic pair-breaking effect in antiferromagnetic superconductors

    Full text link
    Antiferromagnetic superconductors in a magnetic field are studied. We examine a mechanism which significantly reduces the Pauli paramagnetic pair-breaking effect. The mechanism is realized even in the presence of the orbital pair-breaking effect. We illustrate it using a three-dimensional model with an intercalated magnetic subsystem. The upper critical field is calculated for various parameters. It is shown that the upper critical field can reach several times the pure Pauli paramagnetic limit. The possible relevance to the large upper critical field observed in the heavy fermion antiferromagnetic superconductor CePt_3Si discovered recently is briefly discussed. We try to understand the large upper critical field in the compound CePt_3Si and field-induced superconductivity in the compound CePb_3 within a unified framework.Comment: 5 pages, 2 figures, revtex4, minor correction
    • …
    corecore