32 research outputs found

    A planetary health model for reducing exposure to faecal contamination in urban informal settlements: Baseline findings from Makassar, Indonesia

    Get PDF
    Daniel Reidpath - ORCID: 0000-0002-8796-0420 https://orcid.org/0000-0002-8796-0420Background The intense interactions between people, animals and environmental systems in urban informal settlements compromise human and environmental health. Inadequate water and sanitation services, compounded by exposure to flooding and climate change risks, expose inhabitants to environmental contamination causing poor health and wellbeing and degrading ecosystems. However, the exact nature and full scope of risks and exposure pathways between human health and the environment in informal settlements are uncertain. Existing models are limited to microbiological linkages related to faecal-oral exposures at the individual level, and do not account for a broader range of human-environmental variables and interactions that affect population health and wellbeing. Methods We undertook a 12-month health and environmental assessment in 12 flood-prone informal settlements in Makassar, Indonesia. We obtained caregiver-reported health data, anthropometric measurements, stool and blood samples from children < 5 years, and health and wellbeing data for children 5–14 years and adult respondents. We collected environmental data including temperature, mosquito and rat species abundance, and water and sediment samples. Demographic, built environment and household asset data were also collected. We combined our data with existing literature to generate a novel planetary health model of health and environment in informal settlements. Results Across the 12 settlements, 593 households and 2764 participants were enrolled. Two-thirds (64·1%) of all houses (26·3–82·7% per settlement) had formal land tenure documentation. Cough, fever and diarrhoea in the week prior to the survey were reported among an average of 34.3%, 26.9% and 9.7% of children aged < 5 years, respectively; although proportions varied over time, prevalence among these youngest children was consistently higher than among children 5–14 years or adult respondents. Among children < 5 years, 44·3% experienced stunting, 41·1% underweight, 12.4% wasting, and 26.5% were anaemic. There was self- or carer-reported poor mental health among 16.6% of children aged 5–14 years and 13.9% of adult respondents. Rates of potential risky exposures from swimming in waterways, eating uncooked produce, and eating soil or dirt were high, as were exposures to flooding and livestock. Just over one third of households (35.3%) had access to municipal water, and contamination of well water with E. coli and nitrogen species was common. Most (79·5%) houses had an in-house toilet, but no houses were connected to a piped sewer network or safe, properly constructed septic tank. Median monthly settlement outdoor temperatures ranged from 26·2 °C to 29.3 °C, and were on average, 1·1 °C warmer inside houses than outside. Mosquito density varied over time, with Culex quinquefasciatus accounting for 94·7% of species. Framed by a planetary health lens, our model includes four thematic domains: (1) the physical/built environment; (2) the ecological environment; (3) human health; and (4) socio-economic wellbeing, and is structured at individual, household, settlement, and city/beyond spatial scales. Conclusions Our planetary health model includes key risk factors and faecal-oral exposure pathways but extends beyond conventional microbiological faecal-oral enteropathogen exposure pathways to comprehensively account for a wider range of variables affecting health in urban informal settlements. It includes broader ecological interconnections and planetary health-related variables at the household, settlement and city levels. It proposes a composite framework of markers to assess water and sanitation challenges and flood risks in urban informal settlements for optimal design and monitoring of interventions.https://doi.org/10.1016/j.envint.2021.106679155pubpu

    How well do stormwater green infrastructure respond to changing climatic conditions?

    No full text
    Urban green infrastructure (GI) such as biofiltration systems (also known as bioretention, biofilters, rain gardens) are being increasingly implemented in different parts of the world to enhance urban greening whilst controlling stormwater pollution. Treatment effectiveness has been shown to be reliant upon the surrounding climate, including rainfall patterns (e.g. length of wet and dry weather) and temperature. Plant species play a key role in treatment, yet, the response of different plant species to pollutant removal under different climatic and environmental conditions is still not fully known. This information is pertinent to ensure sustained biofilter performance under a range of conditions. This study investigates the change in biofilter nutrient and E. coli removal performance in the presence of four plant species (Canna indica, Carex appressa, Ginkgo biloba and Miscanthus sinensis) with distinct above and below ground characteristics, when exposed to wet weather, dry weather and cold weather conditions. The extent of the decline in nutrient treatment performance following extended drying and under cold conditions was found to be species-specific. Miscanthus sinensis was the best performer and was also found to be cold-resistant. With the exception of Miscanthus sinensis, all plant species were more impacted by the cold temperature (decrease from 70% to 45% TN removal on average; <1 to 30% decrease across species) compared to 4-weeks drying (decrease from 60% to 54% TN removal on average; <1–16% decrease across species) in systems equipped with a submerged zone. In contrast, the 4-weeks drying (E. coli decrease from 2.60 to 1.08 log removal on average) had a more pronounced effect on E. coli removal performance compared to the cold conditions (E. coli decrease from 1.70 to 1.38 log removal on average). This study shows that plant species relative contribution to pollutant removal is pollutant-specific and varies under different climatic conditions. A mix of plant species may ensure higher level of system resilience under a variable climate. The study also highlights the need to understand more about the microbial ecology of these plant systems to optimise both nutrient and pathogen removal for sustained long term performance.</p

    Rainwater for residential hot water supply : Managing microbial risks

    No full text
    There is growing interest in using alternative water sources such as rainwater harvesting and treatment systems to supplement traditional sources and secure a stable supply. For such systems, it is important to ensure adequate water quality, as microbial contamination can be a risk factor in rainwater. The primary objective of this study was to provide proof-of-concept for the microbial treatment capacity of a residential scale rain-to-hot-water treatment system to be installed in Melbourne, Australia. The system consists of a filtration, UV and heat-pump hot water unit, and disinfects roofwater prior to use of the hot water for bath, shower and laundry. The system's efficiency was evaluated using long-term challenge tests investigating the full system and each of the separate components. The microbial treatment performance was assessed based on the systems' ability to treat high levels of E. coli, E. faecalis, Campylobacter, Salmonella and MS2 phage under challenging conditions; with varying flow rates (10-40 L/min) and microbe concentrations (104-105unit/L), and in scenarios of a power outage. Over a compressed year of operation, the full rain-to-hot-water treatment system was extremely efficient at reducing concentrations of E. coli, E. faecalis, Campylobacter, Salmonella and FRNA phages, with log reductions ranging from the lowest average of 2.1log reductions for Salmonella to a maximum of >5.1log for E. coli. Most of the treatment was provided by the UV system, and any remaining microbes present after this point were deactivated by the heat-pump system (provided that the water was given enough time to warm up). Additional modelling work showed that UV intensity, UV transmissivity and contact time (for the UV system) and temperature (for the heat-pump hot water system) could be used as parameters to predict microbial treatment performance of the system, indicating that these easily-measurable parameters could assist with ongoing operation optimisation and maintenance of such systems.</p

    Effect of environmental parameters on pathogen and faecal indicator organism concentrations within an urban estuary

    No full text
    Current World Health Organisation figures estimate that ~2.5 million deaths per year result from recreational contact with contaminated water sources. Concerns about quantitative risk assessments of waterways using faecal indicator organisms (FIOs) as surrogates to infer pathogenic risk currently exist. In Melbourne, Australia, the Yarra River has come under public scrutiny due to perceived public health risks associated with aquatic recreation; a characteristic shared with urban estuaries worldwide. A 10-month study of the Yarra estuary investigated the processes that affect FIOs and pathogens within this system. A total of 74 samples were collected from three estuarine and two upstream, freshwater, locations under different climatic and hydrological conditions, and the levels of Escherichia coli, enterococci, Clostridium perfringens, fRNA coliphages, Campylobacter spp. Cryptosporidium oocysts, Giardia cysts, adenoviruses, and enteroviruses were monitored. Reference pathogenic bacteria, protozoa, and viruses were detected in 81%, 19%, and 8% of samples, respectively. Variations in FIO concentrations were found to be associated with changes in specific climatic and hydrological variables including: temperature, flow, humidity and rainfall. In contrast, pathogen levels remained unaffected by all variables investigated. Limitations of current national and international culture-based standard methods may have played a significant role in limiting the identification of correlative relationships The data demonstrate the differences between FIOs and microbial pathogens in terms of sources, sinks, and survival processes within an urban estuary and provide further evidence of the inadequacy of FIO inclusion in the development of worldwide regulatory water quality criteria and risk assessment models.</p

    <i>Salmonella enterica</i> Serovar Typhimurium and <i>Escherichia coli</i> Survival in Estuarine Bank Sediments

    No full text
    Estuarine bank sediments have the potential to support the survival and growth of fecal indicator organisms, including Escherichia coli. However, survival of fecal pathogens in estuarine sediments is not well researched and therefore remains a significant knowledge gap regarding public health risks in estuaries. In this study, simultaneous survival of Escherichia coli and a fecal pathogen, Salmonella enterica serovar Typhimurium, was studied for 21 days in estuarine bank sediment microcosms. Observed growth patterns for both organisms were comparable under four simulated scenarios; for continuous-desiccation, extended-desiccation, periodic-inundation, and continuous-inundation systems, logarithmic decay coefficients were 1.54/day, 1.51/day, 0.14/day, and 0.20/day, respectively, for E. coli, and 1.72/day, 1.64/day, 0.21/day, and 0.24/day for S. Typhimurium. Re-wetting of continuous-desiccated systems resulted in potential re-growth, suggesting survival under moisture-limited conditions. Key findings from this study include: (i) Bank sediments can potentially support human pathogens (S. Typhimurium), (ii) inundation levels influence the survival of fecal bacteria in estuarine bank sediments, and (iii) comparable survival rates of S. Typhimurium and E. coli implies the latter could be a reliable fecal indicator in urban estuaries. The results from this study will help select suitable monitoring and management strategies for safer recreational activities in urban estuaries

    Environmental monitoring of waterborne Campylobacter: Evaluation of the Australian standard and a hybrid extraction-free MPN-PCR method

    Get PDF
    Campylobacter is the leading agent of diarrheal disease worldwide. This study evaluates a novel culture-PCR hybrid (MPN-PCR) assay for the rapid enumeration of Campylobacter spp. from estuarine and wastewater systems. To first evaluate the current, culture-based, Australian standard, an inter-laboratory study was conducted on 69 subsampled water samples. The proposed Most-Probable Number (MPN)-PCR method was then evaluated, by analysing 147 estuarine samples collected over a 2 year period. Data for 14 different biological, hydrological and climatic parameters were also collated to identify pathogen-environment relationships and assess the potential for method specific bias. The results demonstrated that the intra-laboratory performance of the MPN-PCR was superior to that of AS/NZS (σ = 0.7912, P < 0.001; κ = 0.701, P < 0.001) with an overall diagnostic accuracy of ~94%. Furthermore, the analysis of both MPN-PCR and AS/NZS identified the potential for the introduction of method specific bias during assessment of the effects of environmental parameters on Campylobacter spp. numbers.</p

    Engineering a biofilters microbiome with activated carbon and bioaugmentation to improve stormwater micropollutant removal

    No full text
    Harnessing prokaryotes’ metabolic capacity and adaptive potential is of interest for environmental bioremediation and biological treatment of domestic and industrial waste. Bioaugmentation is commonly implicated in the cleanup of high-dosed environmental pollution. In this study, Arthrobacter aurescens TC1 was used to augment biofiltration systems for bioremediation of stormwater micropollutant. Bioaugmentation was tested on non-vegetated and vegetated system designs, with or without an adsorbent biocarrier [granulated activated carbon (GAC)]. This study investigated how system design affects microbial function and structure. It focused on long-term metabolic responses of the biofilter's microbiome to low chronic exposure to the herbicide atrazine and fluctuations in atrazine load. Shotgun metagenomics analyses demonstrated that the major contributor to microbiome structure was the supplementation of GAC. Vegetation affected microbiome structure mainly in sand biofilter-media. GAC showed a significant shift in atrazine-degrading genes over time compared to sand. Diversity and richness increased with time in all system designs, regardless of atrazine load fluctuations. To conclude, incorporating GAC in stormwater-biofiltration systems effectively enhances the micropollutant-biodegradation capacity in stormwater with negligible effects on the biofilter's microbiome diversity and function.</p

    Into the deep:Evaluation of SourceTracker for assessment of faecal contamination of coastal waters

    No full text
    Faecal contamination of recreational waters is an increasing global health concern. Tracing the source of the contaminant is a vital step towards mitigation and disease prevention. Total 16S rRNA amplicon data for a specific environment (faeces, water, soil) and computational tools such as the Markov-Chain Monte Carlo based SourceTracker can be applied to microbial source tracking (MST) and attribution studies. The current study applied artificial and in-laboratory derived bacterial communities to define the potential and limitations associated with the use of SourceTracker, prior to its application for faecal source tracking at three recreational beaches near Port Phillip Bay (Victoria, Australia). The results demonstrated that at minimum multiple model runs of the SourceTracker modelling tool (i.e. technical replicates) were required to identify potential false positive predictions. The calculation of relative standard deviations (RSDs) for each attributed source improved overall predictive confidence in the results. In general, default parameter settings provided high sensitivity, specificity, accuracy and precision. Application of SourceTracker to recreational beach samples identified treated effluent as major source of human-derived faecal contamination, present in 69% of samples. Site-specific sources, such as raw sewage, stormwater and bacterial populations associated with the Yarra River estuary were also identified. Rainfall and associated sand resuspension at each location correlated with observed human faecal indicators. The results of the optimised SourceTracker analysis suggests that local sources of contamination have the greatest effect on recreational coastal water quality.</p

    Presence and survival of culturable Campylobacter spp. and Escherichia coli in a temperate urban estuary

    No full text
    Urban estuaries throughout the world typically contain elevated levels of faecal contamination, the extent of which is generally assessed using faecal indicator organisms (FIO) such as Escherichia coli. This study assesses whether the bacterial FIO, E. coli is a suitable surrogate for Campylobacter spp., in estuaries. The presence and survival dynamics of culturable E. coli and Campylobacter spp. are compared in the water column, bank sediments and bed sediments of the Yarra River estuary (located in Melbourne, Australia). The presence of E. coli did not necessarily indicate detectable levels of Campylobacter spp. in the water column, bed and bank sediments, but the inactivation rates of the two bacteria were similar in the water column. A key finding of the study is that E. coli and Campylobacter spp. can survive for up to 14 days in the water column and up to 21 days in the bed and bank sediments of the estuary. Preliminary data presented in this study also suggests that the inactivation rates of the two bacteria may be similar in bed and bank sediments. This undermines previous hypotheses that Campylobacter spp. cannot survive outside of its host and indicates that public health risks can persist in aquatic systems for up to three weeks after the initial contamination event.</p
    corecore