4,474 research outputs found
Optimized 4 pi spherical shell depleted uranium-water shield weights for 200 to 550-megawatt reactors
Optimization calculations to determine minimum 4 pi spherical-shell weights were performed at 200-, 375-, and 550-megawatt-thermal reactor power levels. Monte Carlo analyses were performed for a reactor power level corresponding to 375 megawatts. Power densities for the spherical reactor model used varied from 64.2 to 256 watts per cubic centimeter. The dose rate constraint in the optimization calculations was 0.25 mrem per hour at 9.14 meters from the reactor center. The resulting shield weights were correlated with the reactor power levels and power densities by a regression analysis. The optimum shield weight for a 375-megawatt, 160-watt-per-cubic-centimeter reactor was 202,000 kilograms
Diffractive Dissociation and Eikonalization in High Energy pp and p Collisions
We show that eikonal corrections imposed on diffraction dissociation
processes calculated in the triple Regge limit, produce a radical change in the
energy dependence of the predicted cross section. The induced correction is
shown to be in general agreement with the new experimental data measured at the
Tevatron.Comment: 11 pages LATEX, ( two figures not included obtainable from authors)
(TAUP 2066-93 and FERMILAB PUB 93/ T
Colour-Octet Effects in Radiative Decays
We investigate the effects of colour-octet contributions to the radiative
decay within the Bodwin, Braaten and Lepage NRQCD factorization
framework. Photons coming both from the coupling to hard processes (`direct')
and by collinear emission from light quarks (`fragmentation') are consistently
included at next-to-leading order (NLO) in . An estimate for the
non-perturbative matrix elements which enter in the final result is then
obtained. By comparing the NRQCD prediction at NLO for total decay rates with
the experimental data, it is found that the non-perturbative parameters must be
smaller than expected from the na\"\i ve scaling rules of NRQCD. Nevertheless,
colour-octet contributions to the shape of the photon spectrum turn out to be
significant.Comment: 25 pages, Latex, 8 figure
Kinematic Effects in Radiative Quarkonia Decays
Non-relativistic QCD (NRQCD) predicts colour octet contributions to be
significant not only in many production processes of heavy quarkonia but also
in their radiative decays. We investigate the photon energy distributions in
these processes in the endpoint region. There the velocity expansion of NRQCD
breaks down which requires a resummation of an infinite class of colour octet
operators to so-called shape functions. We model these non-perturbative
functions by the emission of a soft gluon cluster in the initial state. We
found that the spectrum in the endpoint region is poorly understood if the
values for the colour octet matrix elements are taken as large as indicated
from NRQCD scaling rules. Therefore the endpoint region should not be taken
into account for a fit of the strong coupling constant at the scale of the
heavy quark mass.Comment: LaTeX, 17 pages, 5 figures. The complete paper is also available via
the www at http://www-ttp.physik.uni-karlsruhe.de/Preprints
Factorization and Scaling in Hadronic Diffraction
In standard Regge theory with a pomeron intercept a(0)=1+\epsilon, the
contribution of the tripe-pomeron amplitude to the t=0 differential cross
section for single diffraction dissociation has the form d\sigma/dM^2(t=0) \sim
s^{2\epsilon}/(M^2)^{1+\epsilon}. For \epsilon>0, this form, which is based on
factorization, does not scale with energy. From an analysis of p-p and p-pbar
data from fixed target to collider energies, we find that such scaling actually
holds, signaling a breakdown of factorization. Phenomenologically, this result
can be obtained from a scaling law in diffraction, which is embedded in the
hypothesis of pomeron flux renormalization introduced to unitarize the triple
pomeron amplitude.Comment: 39 pages, Latex, 16 figure
Diffractive Dissociation In The Interacting Gluon Model
We have extended the Interacting Gluon Model (IGM) to calculate diffractive
mass spectra generated in hadronic collisions. We show that it is possible to
treat both diffractive and non-diffractive events on the same footing, in terms
of gluon-gluon collisions. A systematic analysis of available data is
performed. The energy dependence of diffractive mass spectra is addressed. They
show a moderate narrowing at increasing energies. Predictions for LHC energies
are presented.Comment: 12 pages, latex, 14 figures (PostScript Files included); accepted for
publication in Phys. Rev. D (Feb.97
Measurement of hadronic cross section and preliminary results on the pion form factor using the radiative return at DAPHNE
In the fixed energy environment of the collider DANE, KLOE
can measure the cross section of the process hadrons as a
function of the hadronic system energy using the radiative return. At energies
below 1 GeV, is the dominating
hadronic process. We report here on the status of the analysis for the
e^{+}e^{-} \to \ppg channel, which allows to obtain a preliminary measurement
of the pion form factor using an integrated luminosity of .Comment: Invited talk at the Seventh International Workshop on Tau Lepton
Physics (TAU02-WE07), Santa Cruz, Ca, USA, Sept 2002, 9 pages, LaTeX, 9 eps
figure
Measurement of the ratio Gamma(K_L -> gamma gamma)/Gamma(K_L -> pi^0 pi^0 pi^0) with the KLOE detector
We have measured the ratio R=Gamma(K_L -> gamma gamma)/ \Gamma(K_L -> 3 pi^0)
using the KLOE detector. From a sample of ~ 10^9 phi-mesons produced at DAFNE,
the Frascati phi-factory, we select ~ 1.6 10^8 K_L-mesons tagged by observing
K_S -> pi^+ pi^- following the reaction e^+ e^- -> phi -> K_L K_S. From this
sample we select 27,375 K_L -> gamma gamma events and obtain R = (2.79 \pm
0.02_{stat} \pm 0.02_{syst}) \times 10^{-3}. Using the world average value for
BR(K_{L} -> 3 pi^0), we obtain BR(K_{L} -> gamma gamma) = (5.89 \pm 0.07 \pm
0.08) \times 10^{-4} where the second error is due to the uncertainty on the 3
pi^0 branching fraction.Comment: 14 page
Measuring the hadronic cross section via radiative return
Recently it has been demonstrated that particle factories, such as DAPHNE and
PEP-II, operating at fixed center-of-mass energies, are able to measure
hadronic cross sections as a function of the hadronic system energy using the
raditive return. This paper is an experimental overview of the progress in this
aera. Preliminary results from KLOE for the process e+e- -> \rho \gamma ->
\pi+\pi-\gamma and a fit to the pion form factor are presented. Some first
results from the BABAR collaboration are also shown.Comment: Invited talk presented at RADCOR/Loops and Legs 2002, Kloster
Banz/Germany, September 8-13 2002, 6 pages, 2 Figures; v1: references added,
typos correcte
Measurement of the branching fraction for the decay KS --> pi e nu
We present a measurement of the branching ratio BR(KS --> pi e nu) performed
using the KLOE detector. KS mesons are produced in the reaction e+ e- --> phi
--> KS KL at the DAFNE collider. In a sample of about 5 million KS-tagged
events we find 624 +- 30 semileptonic KS decays. Normalizing to the KS --> pi+
pi- count in the same data sample, we obtain BR(KS --> pi e nu) = (6.91 +-
0.37) 10^-4, in agreement with the Standard Model expectation.Comment: 9 pages, 5 Encapsulated Postscript figures. Submitted to Phys. Lett.
- …