77 research outputs found
Non-linear spectroscopy of rubidium: An undergraduate experiment
In this paper, we describe two complementary non-linear spectroscopy methods
which both allow to achieve Doppler-free spectra of atomic gases. First,
saturated absorption spectroscopy is used to investigate the structure of the
transition in rubidium. Using a slightly
modified experimental setup, Doppler-free two-photon absorption spectroscopy is
then performed on the transition in
rubidium, leading to accurate measurements of the hyperfine structure of the
energy level. In addition, electric dipole selection rules of
the two-photon transition are investigated, first by modifying the polarization
of the excitation laser, and then by measuring two-photon absorption spectra
when a magnetic field is applied close to the rubidium vapor. All experiments
are performed with the same grating-feedback laser diode, providing an
opportunity to compare different high resolution spectroscopy methods using a
single experimental setup. Such experiments may acquaint students with quantum
mechanics selection rules, atomic spectra and Zeeman effect.Comment: 16 pages, 8 figure
Plant Fiber Processing Using the Controlled Deformation Dynamic Mixer
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim The reduced energy consumption required by the controlled deformation dynamic mixer (CDDM) to process plant fibers is highlighted. Trials have been performed using current industrial mixers, and the products created were compared to those produced using the CDDM technology. Increasing pressure leads to a product of higher viscosity, which is more desirable as the fibers have greater structure development and take up more water. This is also observed with the comparison to current mixing technologies, but the energy consumption and pressure required to obtain products of equal viscosities is less when using CDDM technology
Self-Consistent Quasi-Particle RPA for the Description of Superfluid Fermi Systems
Self-Consistent Quasi-Particle RPA (SCQRPA) is for the first time applied to
a more level pairing case. Various filling situations and values for the
coupling constant are considered. Very encouraging results in comparison with
the exact solution of the model are obtained. The nature of the low lying mode
in SCQRPA is identified. The strong reduction of the number fluctuation in
SCQRPA vs BCS is pointed out. The transition from superfluidity to the normal
fluid case is carefully investigated.Comment: 23 pages, 18 figures and 1 table, submitted to Phys. Rev.
- …