9,190 research outputs found
High noise immunity one shot
Multivibrator circuit, which includes constant current source, isolates line noise from timing circuitry and field effect transistor controls circuit's operational modes. Circuit has high immunity to supply line noise
Photofrin II as an efficient radiosensitizing agent in an experimental tumor
Background and Objective: The use of ionizing irradiation as radiation therapy (RT) for tumor treatment represents a well-established method. The use of photodynamic therapy (PDT), especially with Photofrin II, for tumor treatment is also known. Chemical modifiers enhancing the action of radiation therapy are well known and widely used in medicine. None of these compounds, however, is a selective radiosensitizer. Materials and Methods: Several series of animal experiments were performed, The highly differentiated human bladder cancer cell line RT4 was implanted subcutaneously in nude mice. The mice were injected 10 mg/kg Photofrin II and irradiated with 5 Gy. Results: Photofrin II has proved to be a chemical modifier of ionizing irradiation, enhancing the tumor doubling time (tumor growth) from 6.2 to 10.9 days in the control group with the use of irradiation and injection of porphyrin. Conclusion: Photofrin II shows a high activity as radiosensitizer and, in the future, can be used as a selective radiosensitizer for tumor treatment with ionizing radiation
Magnetic induction plasma engine Final report
Wall interaction reduction in magnetic induction plasma accelerato
The importance of electron-electron interactions in the RKKY coupling in graphene
We show that the carrier-mediated exchange interaction, the so-called RKKY
coupling, between two magnetic impurity moments in graphene is significantly
modified in the presence of electron-electron interactions. Using the
mean-field approximation of the Hubbard- model we show that the
-oscillations present in the bulk for
non-interacting electrons disappear and the power-law decay becomes more long
ranged with increasing electron interactions. In zigzag graphene nanoribbons
the effects are even larger with any finite rendering the long-distance
RKKY coupling distance independent. Comparing our mean-field results with
first-principles results we also extract a surprisingly large value of
indicating that graphene is very close to an antiferromagnetic instability.Comment: 4 pages, 3 figure
The possibility of measuring intrinsic electronic correlations in graphene using a d-wave contact Josephson junction
While not widely recognized, electronic correlations might play an important
role in graphene. Indeed, Pauling's resonance valence bond (RVB) theory for the
pp-bonded planar organic molecules, of which graphene is the infinite
extension, already established the importance of the nearest neighbor
spin-singlet bond (SB) state in these materials. However, despite the recent
growth of interest in graphene, there is still no quantitative estimate of the
effects of Coulomb repulsion in either undoped or doped graphene. Here we use a
tight-binding Bogoliubov-de Gennes (TB BdG) formalism to show that in
unconventional d-wave contact graphene Josephson junctions the intrinsic SB
correlations are strongly enhanced. We show on a striking effect of the SB
correlations in both proximity effect and Josephson current as well as
establishing a 1/(T-T_c) functional dependence for the superconducting decay
length. Here T_c is the superconducting transition temperature for the
intrinsic SB correlations, which depends on both the effects of Coulomb
repulsion and the doping level. We therefore propose that d-wave contact
graphene Josephson junctions will provide a promising experimental system for
the measurement of the effective strength of intrinsic SB correlations in
graphene.Comment: 4 pages, 4 figure
Odd-frequency superconducting pairing in topological insulators
We discuss the appearance of odd-frequency spin-triplet s-wave
superconductivity, first proposed by Berezinskii [{\it JETP} {\bf 20}, 287
(1974)], on the surface of a topological insulator proximity coupled to a
conventional spin-singlet s-wave superconductor. Using both analytical and
numerical methods we show that this disorder robust odd-frequency state is
present whenever there is an in-surface gradient in the proximity induced gap,
including superconductor-normal state (SN) junctions. The time-independent
order parameter for the odd-frequency superconductor is proportional to the
in-surface gap gradient. The induced odd-frequency component does not produce
any low-energy states.Comment: 6 pages, 5 figures. v2 contains minor changes + supplementary
materia
The effect of nearest neighbor spin-singlet correlations in conventional graphene SNS Josephson junctions
Using the self-consistent tight-binding Bogoliubov-de Gennes formalism we
have studied the effect of nearest neighbor spin-singlet bond (SB) correlations
on Josephson coupling and proximity effect in graphene SNS Josephson junctions
with conventional s-wave superconducting contacts. Despite the s-wave
superconducting state in the contacts, the SB pairing state inside the junction
has d-wave symmetry and clean, sharp interface junctions resemble a
'bulk-meets-bulk' situation with very little interaction between the two
different superconducting states. In fact, due to a finite-size suppression of
the superconducting state, a stronger SB coupling constant than in the bulk is
needed in order to achieve SB pairing in a junction. For both short clean
zigzag and armchair junctions a d-wave state that has a zero Josephson coupling
to the s-wave state is chosen and therefore the Josephson current decreases
when a SB pairing state develops in these junctions. In more realistic
junctions, with smoother doping profiles and atomic scale disorder at the
interfaces, it is possible to achieve some coupling between the contact s-wave
state and the SB d-wave states. In addition, by breaking the appropriate
lattice symmetry at the interface in order to induce another d-wave state, a
non-zero Josephson coupling can be achieved which leads to a substantial
increase in the Josephson current. We also report on the LDOS of the junctions
and on a lack of zero energy states at interfaces despite the unconventional
order parameters, which we attribute to the near degeneracy of the two d-wave
solutions and their mixing at a general interface.Comment: 13 pages, 9 figures. Typos correcte
Feasibility of Photofrin II as a radiosensitizing agent in solid tumors - Preliminary results
Background: Photofrin II has been demonstrated to serve as a specific and selective radiosensitizing agent in in vitro and in vivo tumor models. We aimed to investigate the feasibility of a clinical application of Photofrin II. Material and Methods: 12 patients were included in the study (7 unresectable solid tumors of the pelvic region, 3 malignant gliomas, 1 recurrent oropharyngeal cancer, 1 recurrent adenocarcinoma of the sphenoid sinus). The dose of ionizing irradiation was 30-50.4 Gy; a boost irradiation of 14 Gy was added for the pelvic region. All patients were intravenously injected with 1 mg/kg Photofrin II 24 h prior to the commencement of radiotherapy. Magnetic resonance imaging (MRI) controls and in some cases positron emission tomography (PET) were performed in short intervals. The mean follow-up was 12.9 months. Results: No major adverse events were noted. Minor adverse events consisted of mild diarrhea, nausea and skin reactions. A complete remission was observed in 4/12 patients. A reduction in local tumor volume of > 45% was achieved in 4/12 patients. Stable disease was observed in 4/12 patients. 1 patient showed local disease progression after 5 months. Conclusion: The early follow-up results are encouraging regarding the feasibility of the application of Photofrin II as a radiosensitizing agent
Changes in student teachers\u27 perceptions of stress during the student teaching semester
The purpose of this study was to examine the changes in the perceptions of stress during the student teaching semester. The pervasive theory regarding the changing stress of student teachers was developed by Fuller (1969). Fuller\u27s developmental conceptualization theory involved three stages of concern or stress: (1) pre-teaching, non-concerns, (2) early-teaching phase, self-concerns and task concerns, and (3) late concerns, impact concerns. This study examined self-concerns, task concerns, and impact concerns and expanded the Fuller (1969) model to also include personal and career concerns
- …