243 research outputs found

    RNA regulation of lipotoxicity and metabolic stress

    Get PDF
    Noncoding RNAs are an emerging class of nonpeptide regulators of metabolism. Metabolic diseases and the altered metabolic environment induce marked changes in levels of microRNAs and long noncoding RNAs. Furthermore, recent studies indicate that a growing number of microRNAs and long noncoding RNAs serve as critical mediators of adaptive and maladaptive responses through their effects on gene expression. The metabolic environment also has a profound impact on the functions of classes of noncoding RNAs that have been thought primarily to subserve housekeeping functions in cells—ribosomal RNAs, transfer RNAs, and small nucleolar RNAs. Evidence is accumulating that these RNAs are also components of an integrated cellular response to the metabolic milieu. This Perspective discusses the different classes of noncoding RNAs and their contributions to the pathogenesis of metabolic stress

    ApoA-1 in Diabetes: Damaged Goods

    Get PDF

    SmD3 regulates intronic noncoding RNA biogenesis

    Get PDF
    Accumulation of excess lipid in nonadipose tissues is associated with oxidative stress and organ dysfunction and plays an important role in diabetic complications. To elucidate molecular events critical for lipotoxicity, we used retroviral promoter trap mutagenesis to generate mutant Chinese hamster ovary cell lines resistant to lipotoxic and oxidative stress. A previous report of a mutant from this screen demonstrated that under lipotoxic conditions, small nucleolar RNAs (snoRNAs) in the rpL13a gene accumulate in the cytosol and serve as critical mediators of lipotoxic cell death. We now report a novel, independent mutant in which a single provirus disrupted one allele of the gene encoding the spliceosomal protein SmD3, creating a model of haploinsufficiency. We show that snoRNA expression and the abundance of snoRNA-containing intron lariats are decreased in SmD3 mutant cells, even though haploinsufficiency of SmD3 supports pre-mRNA splicing. The mechanism through which SmD3 regulates the expression of intronic snoRNAs likely involves effects of SmD3 on the levels of small nuclear RNAs (snRNAs) U4 and U5. Our data implicate SmD3 as a critical determinant in the processing of intronic noncoding RNAs in general and as an upstream mediator of metabolic stress response pathways through the regulation of snoRNA expression

    Alterations in plasma triglycerides and ceramides: Links with cardiac function in humans with type 2 diabetes

    Get PDF
    Cardiac dysfunction in T2D is associated with excessive FA uptake, oxidation, and generation of toxic lipid species by the heart. It is not known whether decreasing lipid delivery to the heart can effect improvement in cardiac function in humans with T2D. Thus, our objective was to test the hypothesis that lowering lipid delivery to the heart would result in evidence of decreased “lipotoxicity,” improved cardiac function, and salutary effects on plasma biomarkers of cardiovascular risk. Thus, we performed a double-blind randomized placebo-controlled parallel design study of the effects of 12 weeks of fenofibrate-induced lipid lowering on cardiac function, inflammation, and oxidation biomarkers, and on the ratio of two plasma ceramides, Cer d18:1 (4E) (1OH, 3OH)/24:0 and Cer d18:1 (4E) (1OH, 3OH)/16:0 (i.e., “C24:0/C16:0”), which is associated with decreased risk of cardiac dysfunction and heart failure. Fenofibrate lowered plasma TG and cholesterol but did not improve heart systolic or diastolic function. Fenofibrate treatment lowered the plasma C24:0/C16:0 ceramide ratio and minimally altered oxidative stress markers but did not alter measures of inflammation. Overall, plasma TG lowering correlated with improvement of cardiac relaxation (diastolic function) as measured by tissue Doppler-derived parameter e′. Moreover, lowering the plasma C24:0/C16:0 ceramide ratio was correlated with worse diastolic function. These findings indicate that fenofibrate treatment per se is not sufficient to effect changes in cardiac function; however, decreases in plasma TG may be linked to improved diastolic function. In contrast, decreases in plasma C24:0/C16:0 are linked with worsening cardiac function

    A pentasaccharide for monitoring pharmacodynamic response to gene therapy in GM1 gangliosidosis

    Get PDF
    BACKGROUND: GM1 gangliosidosis is a rare, fatal, neurodegenerative disease caused by mutations in the GLB1 gene and deficiency in β-galactosidase. Delay of symptom onset and increase in lifespan in a GM1 gangliosidosis cat model after adeno-associated viral (AAV) gene therapy treatment provide the basis for AAV gene therapy trials. The availability of validated biomarkers would greatly improve assessment of therapeutic efficacy. METHODS: The liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to screen oligosaccharides as potential biomarkers for GM1 gangliosidosis. The structures of pentasaccharide biomarkers were determined with mass spectrometry, as well as chemical and enzymatic degradations. Comparison of LC-MS/MS data of endogenous and synthetic compounds confirmed the identification. The study samples were analyzed with fully validated LC-MS/MS methods. FINDINGS: We identified two pentasaccharide biomarkers, H3N2a and H3N2b, that were elevated more than 18-fold in patient plasma, cerebrospinal fluid (CSF), and urine. Only H3N2b was detectable in the cat model, and it was negatively correlated with β-galactosidase activity. Following intravenous (IV) AAV9 gene therapy treatment, reduction of H3N2b was observed in central nervous system, urine, plasma, and CSF samples from the cat model and in urine, plasma, and CSF samples from a patient. Reduction of H3N2b accurately reflected normalization of neuropathology in the cat model and improvement of clinical outcomes in the patient. INTERPRETATIONS: These results demonstrate that H3N2b is a useful pharmacodynamic biomarker to evaluate the efficacy of gene therapy for GM1 gangliosidosis. H3N2b will facilitate the translation of gene therapy from animal models to patients. FUNDING: This work was supported by grants U01NS114156, R01HD060576, ZIAHG200409, and P30 DK020579 from the National Institutes of Health (NIH) and a grant from National Tay-Sachs and Allied Diseases Association Inc
    corecore