362 research outputs found

    Numerical Portrait of a Relativistic BCS Gapped Superfluid

    Full text link
    We present results of numerical simulations of the 3+1 dimensional Nambu - Jona-Lasinio (NJL) model with a non-zero baryon density enforced via the introduction of a chemical potential mu not equal to 0. The triviality of the model with a number of dimensions d>=4 is dealt with by fitting low energy constants, calculated analytically in the large number of colors (Hartree) limit, to phenomenological values. Non-perturbative measurements of local order parameters for superfluidity and their related susceptibilities show that, in contrast to the 2+1 dimensional model, the ground-state at high chemical potential and low temperature is that of a traditional BCS superfluid. This conclusion is supported by the direct observation of a gap in the dispersion relation for 0.5<=(mu a)<=0.85, which at (mu a)=0.8 is found to be roughly 15% the size of the vacuum fermion mass. We also present results of an initial investigation of the stability of the BCS phase against thermal fluctuations. Finally, we discuss the effect of splitting the Fermi surfaces of the pairing partners by the introduction of a non-zero isospin chemical potential.Comment: 41 pages, 19 figures, uses axodraw.sty, v2: minor typographical correction

    On the spectral density from instantons in quenched QCD

    Get PDF
    We investigate the contribution of instantons to the eigenvalue spectrum of the Dirac operator in quenched QCD. The instanton configurations that we use have been derived, elsewhere, from cooled SU(3) lattice gauge fields and, for comparison, we also analyse a random `gas' of instantons. Using a set of simplifying approximations, we find a non-zero chiral condensate. However we also find that the spectral density diverges for small eigenvalues, so that the chiral condensate, at zero quark mass, diverges in quenched QCD. The degree of divergence decreases with the instanton density, so that it is negligible for the smallest number of cooling sweeps but becomes substantial for larger number of cools. We show that the spectral density scales, that finite volume corrections are small and we see evidence for the screening of topological charges. However we also find that the spectral density and chiral condensate vary rapidly with the number of cooling sweeps -- unlike, for example, the topological susceptibility. Whether the problem lies with the cooling or with the identification of the topological charges is an open question. This problem needs to be resolved before one can determine how important is the divergence we have found for quenched QCD.Comment: 33 pages, 16 figures (RevTex), substantial revisions; to appear in Phys.Rev.

    Chirality Correlation within Dirac Eigenvectors from Domain Wall Fermions

    Full text link
    In the dilute instanton gas model of the QCD vacuum, one expects a strong spatial correlation between chirality and the maxima of the Dirac eigenvectors with small eigenvalues. Following Horvath, {\it et al.} we examine this question using lattice gauge theory within the quenched approximation. We extend the work of those authors by using weaker coupling, β=6.0\beta=6.0, larger lattices, 16416^4, and an improved fermion formulation, domain wall fermions. In contrast with this earlier work, we find a striking correlation between the magnitude of the chirality density, ψ(x)γ5ψ(x)|\psi^\dagger(x)\gamma^5\psi(x)|, and the normal density, ψ(x)ψ(x)\psi^\dagger(x)\psi(x), for the low-lying Dirac eigenvectors.Comment: latex, 25 pages including 12 eps figure

    Exclusive processes in position space and the pion distribution amplitude

    Get PDF
    We suggest to carry out lattice calculations of current correlators in position space, sandwiched between the vacuum and a hadron state (e.g. pion), in order to access hadronic light-cone distribution amplitudes (DAs). In this way the renormalization problem for composite lattice operators is avoided altogether, and the connection to the DA is done using perturbation theory in the continuum. As an example, the correlation function of two electromagnetic currents is calculated to the next-to-next-to-leading order accuracy in perturbation theory and including the twist-4 corrections. We argue that this strategy is fully competitive with direct lattice measurements of the moments of the DA, defined as matrix elements of local operators, and offers new insight in the space-time picture of hard exclusive reactions.Comment: 15 pages, 10 figure

    Limits on Cosmological Variation of Strong Interaction and Quark Masses from Big Bang Nucleosynthesis, Cosmic, Laboratory and Oklo Data

    Get PDF
    Recent data on cosmological variation of the electromagnetic fine structure constant from distant quasar (QSO) absorption spectra have inspired a more general discussion of possible variation of other constants. We discuss variation of strong scale and quark masses. We derive the limits on their relative change from (i) primordial Big-Bang Nucleosynthesis (BBN); (ii) Oklo natural nuclear reactor, (iii) quasar absorption spectra, and (iv) laboratory measurements of hyperfine intervals.Comment: 10 pages 2 figurs: second version have several references added and some new comment

    Community structures of actively growing bacteria shift along a north-south transect in the western North Pacific

    Get PDF
    Bacterial community structures and their activities in the ocean are tightly coupled with organic matter fluxes and thus control ocean biogeochemical cycles. Bromodeoxyuridine (BrdU), halogenated nucleoside and thymidine analogue, has been recently used to monitor actively growing bacteria (AGB) in natural environments. We labelled DNA of proliferating cells in seawater bacterial assemblages with BrdU and determined community structures of the bacteria that were possible key species in mediating biochemical reactions in the ocean. Surface seawater samples were collected along a north-south transect in the North Pacific in October 2003 and subjected to BrdU magnetic beads immunocapture and PCR-DGGE (BUMP-DGGE) analysis. Change of BrdU-incorporated community structures reflected the change of water masses along a north-south transect from subarctic to subtropical gyres in the North Pacific. We identified 25 bands referred to AGB as BrdU-incorporated phylotypes, belonging to Alphaproteobacteria (5 bands), Betaproteobacteria (1 band), Gammaproteobacteria (4 bands), Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria (5 bands), Gram-positive bacteria (6 bands), and Cyanobacteria (4 bands). BrdU-incorporated phylotypes belonging to Vibrionales, Alteromonadales and Gram-positive bacteria appeared only at sampling stations in a subtropical gyre, while those belonging to Roseobacter-related bacteria and CFB group bacteria appeared at the stations in both subarctic and subtropical gyres. Our result revealed phylogenetic affiliation of AGB and their dynamic change along with north-south environmental gradients in open oceans. Different species of AGB utilize different amount and kinds of substrates, which can affect the change of organic matter fluxes along transect

    The check of QCD based on the tau-decay data analysis in the complex q^2-plane

    Get PDF
    The thorough analysis of the ALEPH data on hadronic tau-decay is performed in the framework of QCD. The perturbative calculations are performed in 3 and 4-loop approximations. The terms of the operator product expansion (OPE) are accounted up to dimension D=8. The value of the QCD coupling constant alpha_s(m_tau^2)=0.355 pm 0.025 was found from hadronic branching ratio R_tau. The V+A and V spectral function are analyzed using analytical properties of polarization operators in the whole complex q^2-plane. Borel sum rules in the complex q^2 plane along the rays, starting from the origin, are used. It was demonstrated that QCD with OPE terms is in agreement with the data for the coupling constant close to the lower error edge alpha_s(m_tau^2)=0.330. The restriction on the value of the gluonic condensate was found =0.006 pm 0.012 GeV^2. The analytical perturbative QCD was compared with the data. It is demonstrated to be in strong contradiction with experiment. The restrictions on the renormalon contribution were found. The instanton contributions to the polarization operator are analyzed in various sum rules. In Borel transformation they appear to be small, but not in spectral moments sum rules.Comment: 24 pages; 1 latex + 13 figure files. V2: misprints are corrected, uncertainty in alpha_s is explained in more transparent way, acknowledgement is adde

    Mesoscopic models for DNA stretching under force: new results and comparison to experiments

    Full text link
    Single molecule experiments on B-DNA stretching have revealed one or two structural transitions, when increasing the external force. They are characterized by a sudden increase of DNA contour length and a decrease of the bending rigidity. It has been proposed that the first transition, at forces of 60--80 pN, is a transition from B to S-DNA, viewed as a stretched duplex DNA, while the second one, at stronger forces, is a strand peeling resulting in single stranded DNAs (ssDNA), similar to thermal denaturation. But due to experimental conditions these two transitions can overlap, for instance for poly(dA-dT). We derive analytical formula using a coupled discrete worm like chain-Ising model. Our model takes into account bending rigidity, discreteness of the chain, linear and non-linear (for ssDNA) bond stretching. In the limit of zero force, this model simplifies into a coupled model already developed by us for studying thermal DNA melting, establishing a connexion with previous fitting parameter values for denaturation profiles. We find that: (i) ssDNA is fitted, using an analytical formula, over a nanoNewton range with only three free parameters, the contour length, the bending modulus and the monomer size; (ii) a surprisingly good fit on this force range is possible only by choosing a monomer size of 0.2 nm, almost 4 times smaller than the ssDNA nucleobase length; (iii) mesoscopic models are not able to fit B to ssDNA (or S to ss) transitions; (iv) an analytical formula for fitting B to S transitions is derived in the strong force approximation and for long DNAs, which is in excellent agreement with exact transfer matrix calculations; (v) this formula fits perfectly well poly(dG-dC) and λ\lambda-DNA force-extension curves with consistent parameter values; (vi) a coherent picture, where S to ssDNA transitions are much more sensitive to base-pair sequence than the B to S one, emerges.Comment: 14 pages, 9 figure

    Topology and chiral symmetry breaking in SU(N) gauge theories

    Get PDF
    We study the low-lying eigenmodes of the lattice overlap Dirac operator for SU(N) gauge theories with N=2,3,4 and 5 colours. We define a fermionic topological charge from the zero-modes of this operator and show that, as N grows, any disagreement with the topological charge obtained by cooling the fields, becomes rapidly less likely. By examining the fields where there is a disagreement, we are able to show that the Dirac operator does not resolve instantons below a critical size of about rho = 2.5 a, but resolves the larger, more physical instantons. We investigate the local chirality of the near-zero modes and how it changes as we go to larger N. We observe that the local chirality of these modes, which is prominent for SU(2) and SU(3), becomes rapidly weaker for larger N and is consistent with disappearing entirely in the limit of N -> infinity. We find that this is not due to the observed disappearance of small instantons at larger N.Comment: 41 pages, 12 figures, RevTe

    Experimental Study of the Shortest Reset Word of Random Automata

    Get PDF
    In this paper we describe an approach to finding the shortest reset word of a finite synchronizing automaton by using a SAT solver. We use this approach to perform an experimental study of the length of the shortest reset word of a finite synchronizing automaton. The largest automata we considered had 100 states. The results of the experiments allow us to formulate a hypothesis that the length of the shortest reset word of a random finite automaton with nn states and 2 input letters with high probability is sublinear with respect to nn and can be estimated as $1.95 n^{0.55}.
    corecore