81 research outputs found

    Closed, Palindromic, Rich, Privileged, Trapezoidal, and Balanced Words in Automatic Sequences

    Full text link
    We prove that the property of being closed (resp., palindromic, rich, privileged trapezoidal, balanced) is expressible in first-order logic for automatic (and some related) sequences. It therefore follows that the characteristic function of those n for which an automatic sequence x has a closed (resp., palindromic, privileged, rich, trape- zoidal, balanced) factor of length n is automatic. For privileged words this requires a new characterization of the privileged property. We compute the corresponding characteristic functions for various famous sequences, such as the Thue-Morse sequence, the Rudin-Shapiro sequence, the ordinary paperfolding sequence, the period-doubling sequence, and the Fibonacci sequence. Finally, we also show that the function counting the total number of palindromic factors in a prefix of length n of a k-automatic sequence is not k-synchronized

    New Hardness Results for the Permanent Using Linear Optics

    Get PDF
    In 2011, Aaronson gave a striking proof, based on quantum linear optics, that the problem of computing the permanent of a matrix is #P-hard. Aaronson\u27s proof led naturally to hardness of approximation results for the permanent, and it was arguably simpler than Valiant\u27s seminal proof of the same fact in 1979. Nevertheless, it did not show #P-hardness of the permanent for any class of matrices which was not previously known. In this paper, we present a collection of new results about matrix permanents that are derived primarily via these linear optical techniques. First, we show that the problem of computing the permanent of a real orthogonal matrix is #P-hard. Much like Aaronson\u27s original proof, this implies that even a multiplicative approximation remains #P-hard to compute. The hardness result even translates to permanents of orthogonal matrices over the finite field F_{p^4} for p != 2, 3. Interestingly, this characterization is tight: in fields of characteristic 2, the permanent coincides with the determinant; in fields of characteristic 3, one can efficiently compute the permanent of an orthogonal matrix by a nontrivial result of Kogan. Finally, we use more elementary arguments to prove #P-hardness for the permanent of a positive semidefinite matrix. This result shows that certain probabilities of boson sampling experiments with thermal states are hard to compute exactly, despite the fact that they can be efficiently sampled by a classical computer
    • …
    corecore