28 research outputs found
Lending a hand: Social regulation of the neural response to threat
ABSTRACT-Social contact promotes enhanced health and well-being, likely as a function of the social regulation of emotional responding in the face of various life stressors. For this functional magnetic resonance imaging (fMRI) study, 16 married women were subjected to the threat of electric shock while holding their husband's hand, the hand of an anonymous male experimenter, or no hand at all. Results indicated a pervasive attenuation of activation in the neural systems supporting emotional and behavioral threat responses when the women held their husband's hand. A more limited attenuation of activation in these systems occurred when they held the hand of a stranger. Most strikingly, the effects of spousal hand-holding on neural threat responses varied as a function of marital quality, with higher marital quality predicting less threatrelated neural activation in the right anterior insula, superior frontal gyrus, and hypothalamus during spousal, but not stranger, hand-holding
Recommended from our members
Individual Differences in Amygdala and Ventromedial Prefrontal Cortex Activity are Associated with Evaluation Speed and Psychological Well-being
Using functional magnetic resonance imaging, we examined whether individual differences in amygdala activation in response to negative relative to neutral information are related to differences in the speed with which such information is evaluated, the extent to which such differences are associated with medial prefrontal cortex function, and their relationship with measures of trait anxiety and psychological well-being (PWB). Results indicated that faster judgments of negative relative to neutral information were associated with increased left and right amygdala activation. In the prefrontal cortex, faster judgment time was associated with relative decreased activation in a cluster in the ventral anterior cingulate cortex (ACC, BA 24). Furthermore, people who were slower to evaluate negative versus neutral information reported higher PWB. Importantly, higher PWB was strongly associated with increased activation in the ventral ACC for negative relative to neutral information. Individual differences in trait anxiety did not predict variation in judgment time or in amygdala or ventral ACC activity. These findings suggest that people high in PWB effectively recruit the ventral ACC when confronted with potentially aversive stimuli, manifest reduced activity in subcortical regions such as the amygdala, and appraise such information as less salient as reflected in slower evaluative speed
Recommended from our members
Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults
Among younger adults, the ability to willfully regulate negative affect, enabling effective responses to stressful experiences, engages regions of prefrontal cortex (PFC) and the amygdala. Because regions of PFC and the amygdala are known to influence the hypothalamic-pituitary-adrenal axis, here we test whether PFC and amygdala responses during emotion regulation predict the diurnal pattern of salivary cortisol secretion. We also test whether PFC and amygdala regions are engaged during emotion regulation in older (62- to 64-year-old) rather than younger individuals. We measured brain activity using functional magnetic resonance imaging as participants regulated (increased or decreased) their affective responses or attended to negative picture stimuli. We also collected saliva samples for 1 week at home for cortisol assay. Consistent with previous work in younger samples, increasing negative affect resulted in ventral lateral, dorsolateral, and dorsomedial regions of PFC and amygdala activation. In contrast to previous work, decreasing negative affect did not produce the predicted robust pattern of higher PFC and lower amygdala activation. Individuals demonstrating the predicted effect (decrease s attend in the amygdala), however, exhibited higher signal in ventromedial prefrontal cortex (VMPFC) for the same contrast. Furthermore, participants displaying higher VMPFC and lower amygdala signal when decreasing compared with the attention control condition evidenced steeper, more normative declines in cortisol over the course of the day. Individual differences yielded the predicted link between brain function while reducing negative affect in the laboratory and diurnal regulation of endocrine activity in the home environment
Tough Teams and Optimistic Individuals: The Intersecting Roles of Group and Individual Attributes in Helping to Predict Physical Performance
This study tested the effects of individual and group-level characteristics on performance during a mandatory and challenging physical education course at the United States Military Academy (USMA). We focused on attributes related to mental toughness, and examined both self-report and utilized an other-rating scale that measures mental toughness-related characteristics and is important to USMA generally. We examined course scores for 5,581 first-year students over five academic years, accounted for background physical fitness, and determined how mental toughness attributes at the group and individual-level contributed to overall course score and scores on constituent events (e.g. obstacle course, rope climbing). Self-reported optimism, self-reported resilience, and mental toughness items from a peer rating scale, but not self-reported grit, significantly improved course performance. The average score across class section on optimism or the peer rating scale also positively covaried with course score, over and above the individual-level impact of that attribute. Analyses of individual events demonstrated that “group-level character” was important for some events, whereas individual attributes were most important for others. Findings suggested an emergent group character capable of influencing individual physical performance scores. Being a member of a tough group may have comparable effects to individual mental toughness
Recommended from our members
Gaze fixations predict brain activation during the voluntary regulation of picture-induced negative affect
Recent studies have identified a distributed network of brain regions thought to support cognitive reappraisal processes underlying emotion regulation in response to affective images, including parieto-temporal regions and lateral/medial regions of prefrontal cortex (PFC). A number of these commonly activated regions are also known to underlie visuospatial attention and oculomotor control, which raises the possibility that people use attentional redeployment rather than, or in addition to, reappraisal as a strategy to regulate emotion. We predicted that a significant portion of the observed variance in brain activation during emotion regulation tasks would be associated with differences in how participants visually scan the images while regulating their emotions. We recorded brain activation using fMRI and quantified patterns of gaze fixation while participants increased or decreased their affective response to a set of affective images. fMRI results replicated previous findings on emotion regulation with regulation differences reflected in regions of PFC and the amygdala. In addition, our gaze fixation data revealed that when regulating, individuals changed their gaze patterns relative to a control condition. Furthermore, this variation in gaze fixation accounted for substantial amounts of variance in brain activation. These data point to the importance of controlling for gaze fixation in studies of emotion regulation that use visual stimuli
What to put on the user: Sensing technologies for studies and physiology aware systems
Fitness trackers not just provide easy means to acquire physiological data in real-world environments due to affordable sensing technologies, they further offer opportunities for physiology-aware applications and studies in HCI; however, their performance is not well understood. In this paper, we report findings on the quality of 3 sensing technologies: PPG-based wrist trackers (Apple Watch, Microsoft Band 2), an ECG-belt (Polar H7) and reference device with stick-on ECG electrodes (Nexus 10). We collected physiological (heart rate, electrodermal activity, skin temperature) and subjective data from 21 participants performing combinations of physical activity and stressful tasks. Our empirical research indicates that wrist devices provide a good sensing performance in stationary settings. However, they lack accuracy when participants are mobile or if tasks require physical activity. Based on our findings, we suggest a textitDesign Space for Wearables in Research Settings and reflected on the appropriateness of the investigated technologies in research contexts