50 research outputs found

    Preserved Motor Asymmetry in Late Adulthood: Is Measuring Chronological Age Enough?

    Get PDF
    When comparing motor performance of the dominant and nondominant hands, older adults tend to be less asymmetric compared to young adults. This has suggested decreased motor lateralization and functional compensation within the aging brain. The current study further addressed this question by testing whether motor asymmetry was reduced in a sample of 44 healthy right-handed adults ages 65-89. We hypothesized that the older the age, the less the motor asymmetry, and that ‘old old’ participants (age 80+) would have less motor asymmetry than ‘young old’ participants (age 65-79). Using two naturalistic tasks that selectively biased the dominant or nondominant hands, we compared asymmetries in performance (measured as a ratio) across chronological age. Results showed preserved motor asymmetry across ages in both tasks, with no difference in asymmetry ratios in the ‘old old’ compared to the ‘young old.’ In the context of previous work, our findings suggest that the aging brain may also be characterized by additional measures besides chronological age

    Asking new questions with old data: The Centralized Open-Access Rehabilitation database for Stroke

    Get PDF
    Background: This paper introduces a tool for streamlining data integration in rehabilitation science, the Centralized Open-Access Rehabilitation database for Stroke (SCOAR), which allows researchers to quickly visualize relationships among variables, efficiently share data, generate hypotheses, and enhance clinical trial design. Methods: Bibliographic databases were searched according to inclusion criteria leaving 2,892 titles that were further screened to 514 manuscripts to be screened by full text, leaving 215 randomized controlled trials in the database (489 independent groups representing 12,847 patients). Demographic, methodological, and statistical data were extracted by independent coders and entered into SCOAR. Results: Trial data came from 114 locations in 27 different countries and represented patients with a wide range of ages, 62 yr 41; 85, (shown as median range) and at various stages of recovery following their stroke, 141 d 1; 3372. There was considerable variation in the dose of therapy that patients received, 20 h 0; 221, over interventions of different durations, 28 d 10; 365. There was also a lack of common data elements (CDEs) across trials, but this lack of CDEs was most pronounced for baseline assessments of patient impairment and severity of stroke. Conclusions: Data integration across hundreds of RCTs allows clinicians and researchers to quickly visualize data from the history of the field and lays the foundation for making SCOAR a living database to which researchers can upload new data as trial results are published. SCOAR is a useful tool for clinicians and researchers that will facilitate data visualization, data sharing, the finding of relevant past studies, and the design of clinical trials by enabling more accurate and comprehensive power analyses. Furthermore, these data speak to the need for CDEs specific to stroke rehabilitation in randomized controlled trials.PROSPERO# CRD420140901

    Rapid Responsiveness to Practice Predicts Longer-Term Retention of Upper Extremity Motor Skill in Non-Demented Older Adults

    Get PDF
    Skill acquisition is a form of motor learning that may provide key insights into the aging brain. Although previous work suggests that older adults learn novel motor tasks slower and to a lesser extent than younger adults, we have recently demonstrated no significant effect of chronological age on the rates and amounts of skill acquisition, nor on its longterm retention, in adults over the age of 65. To better understand predictors of skill acquisition in non-demented older adults, we now explore the relationship between early improvements in motor performance due to practice (i.e., rapid responsiveness) and longer-term retention of an upper extremity motor skill, and whether the extent of rapid responsiveness was associated with global cognitive status. Results showed significant improvements in motor performance within the first five (of 150) trials, and that this “rapid responsiveness” was predictive of skill retention 1 month later. Notably, the extent of rapid responsiveness was not dependent on global cognitive status, as measured by the Montreal Cognitive Assessment (MoCA). Thus, rapid responsiveness appears to be an important variable in longer-term neurorehabilitative efforts with older adults, regardless of their cognitive status

    Using dual tasks to test immediate transfer of training between naturalistic movements: A proof-of-principle study

    Get PDF
    Theories of motor learning predict that training a movement reduces the amount of attention needed for its performance (i.e. more automatic). If training one movement transfers, then the amount of attention needed for performing a second movement should also be reduced, as measured under dual task conditions. The purpose of this study was to test whether dual task paradigms are feasible for detecting transfer of training between two naturalistic movements. Immediately following motor training, subjects improved performance of a second untrained movement under both single and dual task conditions. Subjects with no training did not. Improved performance in the untrained movement was likely due to transfer, and suggests that dual tasks may be feasible for detecting transfer between naturalistic actions

    Transfer of training between distinct motor tasks after stroke: Implications for task-specific approaches to upper-extremity neurorehabilitation

    Get PDF
    BACKGROUND: Although task-specific training is emerging as a viable approach for recovering motor function after stroke, there is little evidence for whether the effects of such training transfer to other functional motor tasks not directly practiced in therapy. OBJECTIVE: The purpose of the current study was to test whether training on one motor task would transfer to untrained tasks that were either spatiotemporally similar or different in individuals with chronic hemiparesis post-stroke. METHODS: Eleven participants with chronic mild-to-moderate hemiparesis following stroke completed five days of supervised massed practice of a feeding task with their affected side. Performance on the feeding task, along with two other untrained functional upper extremity motor tasks (sorting, dressing) was assessed before and after training. RESULTS: Performance of all three tasks improved significantly after training exclusively on one motor task. The amount of improvement in the untrained tasks was comparable, and was not dependent on the degree of similarity to the trained task. CONCLUSIONS: Because the number and type of tasks that can be practiced are often limited within standard stroke rehabilitation, results from this study will be useful for designing task-specific training plans to maximize therapy benefits

    Need for speed: Better movement quality during faster task performance after stroke

    Get PDF
    BACKGROUND: Although slow and insufficient muscle activation is a hallmark of hemiparesis post-stroke, movement speed is rarely emphasized during upper extremity rehabilitation. Moving faster may increase intensity of task-specific training, but positive and/or negative effects on paretic-limb movement quality are unknown. OBJECTIVE: To determine whether moving quickly instead of at a preferred speed either enhances or impairs paretic limb task performance after stroke. METHODS: Sixteen people with post-stroke hemiparesis and 11 healthy controls performed reach-grasp-lift movements at their preferred speed and as fast as possible, using palmar and 3-finger grip types. We measured durations of the reach and grasp phases, straightness of the reach path, thumb-index finger separation (aperture), efficiency of finger movement, and grip force. RESULTS: As expected, reach and grasp phase durations decreased in the fast condition in both groups, showing that participants were able to move more quickly when asked. When moving fast, the hemiparetic group had reach durations equal to those of healthy controls moving at their preferred speed. Movement quality also improved. Reach paths were straighter and peak apertures were greater in both groups in the fast condition. The group with hemiparesis also showed improved efficiency of finger movement. Differences in peak grip force across speed conditions did not reach significance. CONCLUSIONS: People with hemiparesis are able to move faster than they choose to, and when they do, movement quality is improved. Simple instructions to move faster could be a cost-free and effective means of increasing rehabilitation intensity after stroke

    Age and sex effects on SuperG performance are consistent across internet devices

    Get PDF
    There have been recent advances in the application of online games that assess motor skill acquisition/learning and its relationship to age and biological sex, both of which are associated with dementia risk. While this online motor learning assessment (called Super G), along with other computer-based cognitive tests, was originally developed to be completed on a computer, many people (including older adults) have been shown to access the internet through a mobile device. Thus, to improve the generalizability of our online motor skill learning game, it must not only be compatible with mobile devices but also yield replicable effects of various participant characteristics on performance relative to the computer-based version. It is unknown if age and sex differentially affect game performance as a function of device type (keyboard versus touchscreen control). Thus, the purpose of this study was to investigate if device type modifies the established effects of age and sex on performance. Although there was a main effect of device on performance, this effect did not alter the overall relationship between performance vs. age or sex. This establishes that Super G can now effectively be extended to both computer and mobile platforms to further test for dementia risk factor

    Grip type and task goal modify reach-to-grasp performance in post-stroke hemiparesis

    Get PDF
    This study investigated whether grip type and/or task goal influenced reaching and grasping performance in post-stroke hemiparesis. Sixteen adults with post-stroke hemiparesis and twelve healthy adults reached to and grasped a cylindrical object using one of two grip types (3-finger or palmar) to achieve one of two task goals (hold or lift). Performance of the stroke group was characteristic of hemiparetic limb movement during reach-to-grasp, with more curved handpaths and slower velocities compared to the control group. These effects were present regardless of grip type or task goal. Other measures of reaching (reach time and reach velocity at object contact) and grasping (peak thumb-index finger aperture during the reach and peak grip force during the grasp) were differentially affected by grip type, task goal, or both, despite the presence of hemiparesis, providing new evidence that changes in motor patterns after stroke may occur to compensate for stroke-related motor impairment

    Relating Global Cognition With Upper-Extremity Motor Skill Retention in Individuals With Mild-to-Moderate Parkinson's Disease

    Get PDF
    Background and Purpose: Cognition has been linked to rehabilitation outcomes in stroke populations, but this remains unexplored in individuals with Parkinson's disease (PD). The purpose of this secondary data analysis from a recent clinical trial (NCT02600858) was to determine if global cognition was related to skill performance after motor training in individuals with PD.Methods: Twenty-three participants with idiopathic PD completed 3 days of training on an upper-extremity task. For the purposes of the original clinical trial, participants trained either “on” or “off” their dopamine replacement medication. Baseline, training, and 48-h retention data have been previously published. Global cognition was evaluated using the Montreal Cognitive Assessment (MoCA). Linear regression examined whether MoCA score predicted longer-term retention at nine-day follow-up; baseline motor task performance, age, PD severity, depressive symptoms, and group (medication “on”/“off”) were included as covariates. Baseline and follow-up motor task performance were assessed for all participants while “on” their medication.Results: MoCA score was positively related to follow-up motor task performance, such that individuals with better cognition were faster than those with poorer cognition. Baseline task performance, age, PD severity, depressive symptoms, and medication status were unrelated to follow-up performance.Discussion and Conclusions: Results of this secondary analysis align with previous work that suggest cognitive impairment may interfere with motor learning in PD and support the premise that cognitive training prior to or concurrent with motor training may enhance rehabilitative outcomes for individuals with PD. Findings also suggest that assessing cognition in individuals with PD could provide prognostic information about their responsiveness to motor rehabilitation
    corecore