4 research outputs found

    Study of Al-Si Alloy Oxygen Saturation on Its Microstructure and Mechanical Properties

    Full text link
    One of the main goals of modern materials research is obtaining different microstructures and studying their influence on the mechanical properties of metals; aluminum alloys are particularly of interest due to their advanced performance. Traditionally, their required properties are obtained by alloying process, modification, or physical influence during solidification. The present work describes a saturation of the overheated AlSi7Fe1 casting alloy by oxides using oxygen blowing approach in overheated alloy. Changes in metals’ microstructural and mechanical properties are also described in the work. An Al10SiFe intermetallic complex compound was obtained as a preferable component to Al2O3 precipitation on it, and its morphology was investigated by scanning electron microscopy. The mechanical properties of the alloy after the oxygen blowing treatment are discussed in this work

    MICROSTRUCTURES, MECHANICAL PROPERTIES INGOT AlSi7Fe1 AFTER BLOWING OXYGEN THROUGH MELT

    Full text link
    The new technology of producing ingot of AlSi7Fe1 high-strength is described. This new technology consists in saturation of melt with hydrogen, with further blowing with oxygen. Studied the microstructure, phase composition and mechanical properties of ingot after blowing oxygen of melt and ingot obtained with the traditional method. Have suggested that in liquid aluminum alloy AlSi7Fe1 because of blowing with oxygen arise refractory particles Al2O3. These particles Al2O3 further in crystallization serve as a modifier of the microstructure of ingot. Mostly observed modifications of eutectic phases. Thus saturation of melt with hydrogen, with further blowing with oxygen provides an increased tensile strength of ingot AlSi7Fe1.</jats:p

    Aluminum Alloy Selection for In Situ Composite Production by Oxygen Blowing

    No full text
    We considered the possibility of using AlMg10, AlCu5, AlCu5Cd, AlSi12, and AlSi7Zn9 as initial alloys for in situ composites production via oxygen blowing of hydrogen pre-saturated melts as an alternative to AlSi7Fe. The production process provides the destruction of the oxide film on the melt surface. It was demonstrated that oxide film on AlMg10 alloy did not get destroyed due to the heavy thickness because of the porous structure that contributed to its kinetically based growth. Copper-bearing alloys AlCu5 and AlCu5Cd were characterized by the low-strength oxide film and got destroyed before floating, causing the oxide porosity. Silicon-bearing alloys AlSi12 and AlSi7Zn9 provide the dense structure, which makes it clear that to understand the Pilling&ndash;Bedworth ratio for basic alloying elements is required for a non-destructed oxide void floating and shall exceed the range of 1.64&ndash;1.77. However, the oxide film in silicon-bearing alloys under investigation did not get destroyed into fine particles. AlSi7Zn9 alloy had inclusions of smaller sizes as compared to AlSi12 alloy due to the ZnO that embrittled the film, but which were grouped to form oxide islands. Moreover, zinc was evaporated during blowing. The mechanical properties of the produced composites were based on the alloys under investigation which were in line with their structures. A higher value of the Pilling&ndash;Bedworth ratio of impurities was required for fine crushing: The conventionally used AlSi7Fe alloy met this requirement and was therefore considered to be the optimum version

    Study of Al-Si Alloy Oxygen Saturation on Its Microstructure and Mechanical Properties

    No full text
    One of the main goals of modern materials research is obtaining different microstructures and studying their influence on the mechanical properties of metals; aluminum alloys are particularly of interest due to their advanced performance. Traditionally, their required properties are obtained by alloying process, modification, or physical influence during solidification. The present work describes a saturation of the overheated AlSi7Fe1 casting alloy by oxides using oxygen blowing approach in overheated alloy. Changes in metals’ microstructural and mechanical properties are also described in the work. An Al10SiFe intermetallic complex compound was obtained as a preferable component to Al2O3 precipitation on it, and its morphology was investigated by scanning electron microscopy. The mechanical properties of the alloy after the oxygen blowing treatment are discussed in this work
    corecore