1,558 research outputs found
Orientational transition in a nematic liquid crystal at a patterned surface
T. J. Atherton and J. Roy Sambles, Physical Review E, Vol. 74, article 022701 (2006) "Copyright © 2006 by the American Physical Society."We consider a semi-infinite nematic in contact with a periodic patterned surface with alternate planar and homeotropic stripes. Extending the work of Barbero et al., we find the free energy (assuming K1=K3) for the situations where the easy direction on the planar stripe is either perpendicular or parallel to the length of the stripes. We find the bulk free energy difference between the structures to be proportional to √ K2/K1 and so we consider the possibility of a spontaneous transition between the two states if the azimuthal anchoring energy is sufficiently weak and K1≠K2. We compute the critical azimuthal anchoring energy for such a transition in terms of the relative width of the stripes and the period of the pattern and find it to be ~10−6 J m−2, comparable to experimental values
Evolving toward a human-cell based and multiscale approach to drug discovery for CNS disorders
A disruptive approach to therapeutic discovery and development is required in order to significantly improve the success rate of drug discovery for central nervous system (CNS) disorders. In this review, we first assess the key factors contributing to the frequent clinical failures for novel drugs. Second, we discuss cancer translational research paradigms that addressed key issues in drug discovery and development and have resulted in delivering drugs with significantly improved outcomes for patients. Finally, we discuss two emerging technologies that could improve the success rate of CNS therapies: human induced pluripotent stem cell (hiPSC)-based studies and multiscale biology models. Coincident with advances in cellular technologies that enable the generation of hiPSCs directly from patient blood or skin cells, together with methods to differentiate these hiPSC lines into specific neural cell types relevant to neurological disease, it is also now possible to combine data from large-scale forward genetics and post-mortem global epigenetic and expression studies in order to generate novel predictive models. The application of systems biology approaches to account for the multiscale nature of different data types, from genetic to molecular and cellular to clinical, can lead to new insights into human diseases that are emergent properties of biological networks, not the result of changes to single genes. Such studies have demonstrated the heterogeneity in etiological pathways and the need for studies on model systems that are patient-derived and thereby recapitulate neurological disease pathways with higher fidelity. In the context of two common and presumably representative neurological diseases, the neurodegenerative disease Alzheimer’s Disease (AD), and the psychiatric disorder schizophrenia (SZ), we propose the need for, and exemplify the impact of, a multiscale biology approach that can integrate panomic, clinical, imaging, and literature data in order to c
Comprehensive User Engagement Sites (CUES) in Philadelphia: A Constructive Proposal
This paper is a study about Philadelphia’s comprehensive user engagement sites (CUESs) as the authors address and examine issues related to the upcoming implementation of a CUES while seeking solutions for its disputed questions and plans. Beginning with the federal drug schedules, the authors visit some of the medical and public health issues vis-à-vis safe injection facilities (SIFs). Insite, a successful Canadian SIF, has been thoroughly researched as it represents a paradigm for which a Philadelphia CUES can expand upon. Also, the existing criticisms against SIFs are revisited while critically unpackaged and responded to in favor of the establishment. In the main section, the authors propose the layout and services of the upcoming CUES, much of which would be in congruent to Vancouver’s Insite. On the other hand, the CUES would be distinct from Insite, as the authors emphasize, in that it will offer an information center run by individuals in recovery and place additional emphasis on early education for young healthcare professionals by providing them a platform to work at the site. The paper will also briefly investigate the implementation of a CUES site under an ethical scope of the Harm Reduction Theory. Lastly, the authors recommend some strategic plans that the Philadelphia City government may consider employing at this crucial stage
Detection of regulator genes and eQTLs in gene networks
Genetic differences between individuals associated to quantitative phenotypic
traits, including disease states, are usually found in non-coding genomic
regions. These genetic variants are often also associated to differences in
expression levels of nearby genes (they are "expression quantitative trait
loci" or eQTLs for short) and presumably play a gene regulatory role, affecting
the status of molecular networks of interacting genes, proteins and
metabolites. Computational systems biology approaches to reconstruct causal
gene networks from large-scale omics data have therefore become essential to
understand the structure of networks controlled by eQTLs together with other
regulatory genes, and to generate detailed hypotheses about the molecular
mechanisms that lead from genotype to phenotype. Here we review the main
analytical methods and softwares to identify eQTLs and their associated genes,
to reconstruct co-expression networks and modules, to reconstruct causal
Bayesian gene and module networks, and to validate predicted networks in
silico.Comment: minor revision with typos corrected; review article; 24 pages, 2
figure
Nematic liquid crystal alignment on chemical patterns
Patterned Self-Assembled Monolayers (SAMs) promoting both homeotropic and planar degenerate alignment of 6CB and 9CB in their nematic phase, were created using microcontact printing of functionalised organothiols on gold films. The effects of a range of different pattern geometries and sizes were investigated, including stripes, circles and checkerboards. EvanescentWave Ellipsometry was used to study the orientation of the liquid crystal (LC) on these patterned surfaces during the isotropic-nematic phase transition. Pretransitional growth of a homeotropic layer was observed on 1 ¹m homeotropic aligning stripes, followed by a homeotropic mono-domain state prior to the
bulk phase transition. Accompanying Monte-Carlo simulations of LCs aligned on nano-patterned surfaces were also performed. These simulations also showed the presence of the homeotropic mono-domain state prior to the transition.</p
DNA nucleotide-specific modulation of \mu A transverse edge currents through a metallic graphene nanoribbon with a nanopore
We propose two-terminal devices for DNA sequencing which consist of a
metallic graphene nanoribbon with zigzag edges (ZGNR) and a nanopore in its
interior through which the DNA molecule is translocated. Using the
nonequilibrium Green functions combined with density functional theory, we
demonstrate that each of the four DNA nucleotides inserted into the nanopore,
whose edge carbon atoms are passivated by either hydrogen or nitrogen, will
lead to a unique change in the device conductance. Unlike other recent
biosensors based on transverse electronic transport through DNA nucleotides,
which utilize small (of the order of pA) tunneling current across a nanogap or
a nanopore yielding a poor signal-to-noise ratio, our device concept relies on
the fact that in ZGNRs local current density is peaked around the edges so that
drilling a nanopore away from the edges will not diminish the conductance.
Inserting a DNA nucleotide into the nanopore affects the charge density in the
surrounding area, thereby modulating edge conduction currents whose magnitude
is of the order of \mu A at bias voltage ~ 0.1 V. The proposed biosensor is not
limited to ZGNRs and it could be realized with other nanowires supporting
transverse edge currents, such as chiral GNRs or wires made of two-dimensional
topological insulators.Comment: 6 pages, 6 figures, PDFLaTe
Mapping the genetic architecture of gene expression in human liver
Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein cholesterol levels in the process. © 2008 Schadt et al
A Bayesian Partition Method for Detecting Pleiotropic and Epistatic eQTL Modules
Studies of the relationship between DNA variation and gene expression variation, often referred to as “expression quantitative trait loci (eQTL) mapping”, have been conducted in many species and resulted in many significant findings. Because of the large number of genes and genetic markers in such analyses, it is extremely challenging to discover how a small number of eQTLs interact with each other to affect mRNA expression levels for a set of co-regulated genes. We present a Bayesian method to facilitate the task, in which co-expressed genes mapped to a common set of markers are treated as a module characterized by latent indicator variables. A Markov chain Monte Carlo algorithm is designed to search simultaneously for the module genes and their linked markers. We show by simulations that this method is more powerful for detecting true eQTLs and their target genes than traditional QTL mapping methods. We applied the procedure to a data set consisting of gene expression and genotypes for 112 segregants of S. cerevisiae. Our method identified modules containing genes mapped to previously reported eQTL hot spots, and dissected these large eQTL hot spots into several modules corresponding to possibly different biological functions or primary and secondary responses to regulatory perturbations. In addition, we identified nine modules associated with pairs of eQTLs, of which two have been previously reported. We demonstrated that one of the novel modules containing many daughter-cell expressed genes is regulated by AMN1 and BPH1. In conclusion, the Bayesian partition method which simultaneously considers all traits and all markers is more powerful for detecting both pleiotropic and epistatic effects based on both simulated and empirical data
Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'
We combined large-scale mRNA expression analysis and gene mapping to identify genes and loci that control hematopoietic stem cell (HSC) function. We measured mRNA expression levels in purified HSCs isolated from a panel of densely genotyped recombinant inbred mouse strains. We mapped quantitative trait loci (QTLs) associated with variation in expression of thousands of transcripts. By comparing the physical transcript position with the location of the controlling QTL, we identified polymorphic cis-acting stem cell genes. We also identified multiple trans-acting control loci that modify expression of large numbers of genes. These groups of coregulated transcripts identify pathways that specify variation in stem cells. We illustrate this concept with the identification of candidate genes involved with HSC turnover. We compared expression QTLs in HSCs and brain from the same mice and identified both shared and tissue-specific QTLs. Our data are accessible through WebQTL, a web-based interface that allows custom genetic linkage analysis and identification of coregulated transcripts.
- …